Advanced Trigonometric Relations Through Nbic Functions /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
[Place of publication not identified] :
New Age International,
2011.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover ; Preface ; Acknowledgement ; Notation ; Contents ; Chapter 1 Nbic Functions and Nbic Trigonometric Relations ; 1.1 Introduction ; 1.1.1 Circular Angle ; 1.1.2 Definition of Hyperbolic Angle and Tan-equivalent Hyperbolic (tehy) Angle ; 1.2 Definition and Interpretation of Nbic Angle ; 1.2.1 Nbic Angle and its Interpretation ; 1.2.2 Tan-Equivalent Nbic (teN) Angle ; 1.3 Symbolic Identification of Nbic Functions ; 1.3.1 Nbic Trigonometry ; 1.3.2 Interchangeability of Trigonometric and Hyperbolic Functions ; 1.3.3 Surface, Gaussian Curvature and Angle Sum.
- 1.3.4 Nbic Functions and Nbic Trigonometric Relations 1.4 Complex Nbic Functions ; 1.4.1 Some Basic Complex Functions ; 1.4.2 Generation of Single Nbic Function, N (x, y) ; 1.4.3 Single Nbic Function With Suffixes A and B ; 1.4.4 Particular Case ; 1.4.5 Complex Single Nbic Function with Suffixes A and B, [NA / (x, x), NB / (x, x)] ; 1.5 Generation of Double Nbic Function, N2 (x, y) ; 1.5.1 As Generated from Complex Double Nbic Function, N2/(x, y) ; 1.5.2 Category 1 : (E type) ; 1.5.3 Particular Case ; 1.5.4 Category 2 : (F type) ; 1.5.5 Particular Case.
- 1.5.6 Double Nbic Function with Suffixes A and B 1.6 Generation of Triple Nbic Function, N3(x, y) ; 1.6.1 As Generated from Complex Triple Nbic Function, N3 / (x, y) ; 1.6.2 Category 1 : (E type) ; 1.6.3 Particular Case ; 1.6.4 Category 2 : (F type) ; 1.6.5 Particular Case ; 1.6.6 Category M (Mixed Category) ; 1.6.7 Triple Nbic Function with Suffixes A and B ; 1.6.8 Particular Case ; 1.7 Definition and Development of Nbic Function ; 1.7.1 Single Nbic Function with Variable (x, y) : N(x, y) ; 1.7.2 Single Nbic Function with Variable of x Only : N(x, x).
- 1.7.3 Graphical Determination of Single Nbic Functions 1.7.4 Single Nbic Function with Complex Variable of (ix) Only : N (ix, ix) ; 1.7.5 Comparison with Corresponding Circular and Hyperbolic Functions ; 1.8 Derivation of Expressions of Other Basic Nbic Functions ; 1.8.1 To Find sinNx and cosNx, when only, tanNx is given ; 1.8.2 Differentiation Rule for Single Nbic Functions ; 1.8.3 Numerical Verification of Expressions ; 1.8.4 Basic Nbic Functions and their Derivatives ; 1.8.5 Integration Rule for Single Nbic Functions ; 1.8.6 Related Expressions Involving Differentiation and Integration.
- 1.8.7 Interpretation and Representation in Terms of Circular Functions 1.9 Nbic Functions with Variable (2x, 2x) AND (2x, x) ; 1.9.1 Similarity of Forms ; 1.9.2 Single Nbic Function with Double Angle, N(2x, 2x) in Terms of, N(2x, x) ; 1.9.3 Some Examples Related to Nbic Functions with Variable (2x, 2x) and (2x, x) ; Chapter 2 Complex Nbic Function and Associated Topics ; 2.1 De Moivre's form Extended in Nbic Function ; 2.1.1 Complex Circular Function (Coci-function) ; 2.1.2 Complex Hyperbolic Function (Cohy-function).