Cargando…

Advanced Trigonometric Relations Through Nbic Functions /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bairagi, Nisith K.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Place of publication not identified] : New Age International, 2011.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn842259898
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |nu||||||||
008 130401s2011 xx o 000 0 eng
040 |a AU@  |b eng  |e pn  |c AU@  |d OCLCO  |d EBLCP  |d OCLCQ  |d DEBSZ  |d ZCU  |d MERUC  |d ICG  |d AU@  |d OCLCQ  |d DKC  |d OCLCQ  |d SGP  |d OCLCF  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9788122434910 
020 |a 8122434916 
029 0 |a AU@  |b 000050893812 
029 1 |a DEBBG  |b BV044087106 
029 1 |a DEBSZ  |b 449535290 
035 |a (OCoLC)842259898 
050 4 |a QA531 ǂb B35 2012eb 
049 |a UAMI 
100 1 |a Bairagi, Nisith K. 
245 1 0 |a Advanced Trigonometric Relations Through Nbic Functions /  |c Bairagi, Nisith K. 
260 |a [Place of publication not identified] :  |b New Age International,  |c 2011. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Title from content provider. 
505 0 |a Cover ; Preface ; Acknowledgement ; Notation ; Contents ; Chapter 1 Nbic Functions and Nbic Trigonometric Relations ; 1.1 Introduction ; 1.1.1 Circular Angle ; 1.1.2 Definition of Hyperbolic Angle and Tan-equivalent Hyperbolic (tehy) Angle ; 1.2 Definition and Interpretation of Nbic Angle ; 1.2.1 Nbic Angle and its Interpretation ; 1.2.2 Tan-Equivalent Nbic (teN) Angle ; 1.3 Symbolic Identification of Nbic Functions ; 1.3.1 Nbic Trigonometry ; 1.3.2 Interchangeability of Trigonometric and Hyperbolic Functions ; 1.3.3 Surface, Gaussian Curvature and Angle Sum. 
505 8 |a 1.3.4 Nbic Functions and Nbic Trigonometric Relations 1.4 Complex Nbic Functions ; 1.4.1 Some Basic Complex Functions ; 1.4.2 Generation of Single Nbic Function, N (x, y) ; 1.4.3 Single Nbic Function With Suffixes A and B ; 1.4.4 Particular Case ; 1.4.5 Complex Single Nbic Function with Suffixes A and B, [NA / (x, x), NB / (x, x)] ; 1.5 Generation of Double Nbic Function, N2 (x, y) ; 1.5.1 As Generated from Complex Double Nbic Function, N2/(x, y) ; 1.5.2 Category 1 : (E type) ; 1.5.3 Particular Case ; 1.5.4 Category 2 : (F type) ; 1.5.5 Particular Case. 
505 8 |a 1.5.6 Double Nbic Function with Suffixes A and B 1.6 Generation of Triple Nbic Function, N3(x, y) ; 1.6.1 As Generated from Complex Triple Nbic Function, N3 / (x, y) ; 1.6.2 Category 1 : (E type) ; 1.6.3 Particular Case ; 1.6.4 Category 2 : (F type) ; 1.6.5 Particular Case ; 1.6.6 Category M (Mixed Category) ; 1.6.7 Triple Nbic Function with Suffixes A and B ; 1.6.8 Particular Case ; 1.7 Definition and Development of Nbic Function ; 1.7.1 Single Nbic Function with Variable (x, y) : N(x, y) ; 1.7.2 Single Nbic Function with Variable of x Only : N(x, x). 
505 8 |a 1.7.3 Graphical Determination of Single Nbic Functions 1.7.4 Single Nbic Function with Complex Variable of (ix) Only : N (ix, ix) ; 1.7.5 Comparison with Corresponding Circular and Hyperbolic Functions ; 1.8 Derivation of Expressions of Other Basic Nbic Functions ; 1.8.1 To Find sinNx and cosNx, when only, tanNx is given ; 1.8.2 Differentiation Rule for Single Nbic Functions ; 1.8.3 Numerical Verification of Expressions ; 1.8.4 Basic Nbic Functions and their Derivatives ; 1.8.5 Integration Rule for Single Nbic Functions ; 1.8.6 Related Expressions Involving Differentiation and Integration. 
505 8 |a 1.8.7 Interpretation and Representation in Terms of Circular Functions 1.9 Nbic Functions with Variable (2x, 2x) AND (2x, x) ; 1.9.1 Similarity of Forms ; 1.9.2 Single Nbic Function with Double Angle, N(2x, 2x) in Terms of, N(2x, x) ; 1.9.3 Some Examples Related to Nbic Functions with Variable (2x, 2x) and (2x, x) ; Chapter 2 Complex Nbic Function and Associated Topics ; 2.1 De Moivre's form Extended in Nbic Function ; 2.1.1 Complex Circular Function (Coci-function) ; 2.1.2 Complex Hyperbolic Function (Cohy-function). 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Trigonometry. 
650 0 |a Mathematics. 
650 6 |a Trigonométrie. 
650 6 |a Mathématiques. 
650 7 |a trigonometry.  |2 aat 
650 7 |a Mathematics  |2 fast 
650 7 |a Trigonometry  |2 fast 
758 |i has work:  |a Advanced Trigonometric Relations Through Nbic Functions (Text)  |1 https://id.oclc.org/worldcat/entity/E39PD3RcFDky7JBWb8thKDWdgq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3017437  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL3017437 
994 |a 92  |b IZTAP