|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_ocn842259898 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |nu|||||||| |
008 |
130401s2011 xx o 000 0 eng |
040 |
|
|
|a AU@
|b eng
|e pn
|c AU@
|d OCLCO
|d EBLCP
|d OCLCQ
|d DEBSZ
|d ZCU
|d MERUC
|d ICG
|d AU@
|d OCLCQ
|d DKC
|d OCLCQ
|d SGP
|d OCLCF
|d OCLCQ
|d OCLCO
|d OCLCL
|
020 |
|
|
|a 9788122434910
|
020 |
|
|
|a 8122434916
|
029 |
0 |
|
|a AU@
|b 000050893812
|
029 |
1 |
|
|a DEBBG
|b BV044087106
|
029 |
1 |
|
|a DEBSZ
|b 449535290
|
035 |
|
|
|a (OCoLC)842259898
|
050 |
|
4 |
|a QA531 ǂb B35 2012eb
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Bairagi, Nisith K.
|
245 |
1 |
0 |
|a Advanced Trigonometric Relations Through Nbic Functions /
|c Bairagi, Nisith K.
|
260 |
|
|
|a [Place of publication not identified] :
|b New Age International,
|c 2011.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Title from content provider.
|
505 |
0 |
|
|a Cover ; Preface ; Acknowledgement ; Notation ; Contents ; Chapter 1 Nbic Functions and Nbic Trigonometric Relations ; 1.1 Introduction ; 1.1.1 Circular Angle ; 1.1.2 Definition of Hyperbolic Angle and Tan-equivalent Hyperbolic (tehy) Angle ; 1.2 Definition and Interpretation of Nbic Angle ; 1.2.1 Nbic Angle and its Interpretation ; 1.2.2 Tan-Equivalent Nbic (teN) Angle ; 1.3 Symbolic Identification of Nbic Functions ; 1.3.1 Nbic Trigonometry ; 1.3.2 Interchangeability of Trigonometric and Hyperbolic Functions ; 1.3.3 Surface, Gaussian Curvature and Angle Sum.
|
505 |
8 |
|
|a 1.3.4 Nbic Functions and Nbic Trigonometric Relations 1.4 Complex Nbic Functions ; 1.4.1 Some Basic Complex Functions ; 1.4.2 Generation of Single Nbic Function, N (x, y) ; 1.4.3 Single Nbic Function With Suffixes A and B ; 1.4.4 Particular Case ; 1.4.5 Complex Single Nbic Function with Suffixes A and B, [NA / (x, x), NB / (x, x)] ; 1.5 Generation of Double Nbic Function, N2 (x, y) ; 1.5.1 As Generated from Complex Double Nbic Function, N2/(x, y) ; 1.5.2 Category 1 : (E type) ; 1.5.3 Particular Case ; 1.5.4 Category 2 : (F type) ; 1.5.5 Particular Case.
|
505 |
8 |
|
|a 1.5.6 Double Nbic Function with Suffixes A and B 1.6 Generation of Triple Nbic Function, N3(x, y) ; 1.6.1 As Generated from Complex Triple Nbic Function, N3 / (x, y) ; 1.6.2 Category 1 : (E type) ; 1.6.3 Particular Case ; 1.6.4 Category 2 : (F type) ; 1.6.5 Particular Case ; 1.6.6 Category M (Mixed Category) ; 1.6.7 Triple Nbic Function with Suffixes A and B ; 1.6.8 Particular Case ; 1.7 Definition and Development of Nbic Function ; 1.7.1 Single Nbic Function with Variable (x, y) : N(x, y) ; 1.7.2 Single Nbic Function with Variable of x Only : N(x, x).
|
505 |
8 |
|
|a 1.7.3 Graphical Determination of Single Nbic Functions 1.7.4 Single Nbic Function with Complex Variable of (ix) Only : N (ix, ix) ; 1.7.5 Comparison with Corresponding Circular and Hyperbolic Functions ; 1.8 Derivation of Expressions of Other Basic Nbic Functions ; 1.8.1 To Find sinNx and cosNx, when only, tanNx is given ; 1.8.2 Differentiation Rule for Single Nbic Functions ; 1.8.3 Numerical Verification of Expressions ; 1.8.4 Basic Nbic Functions and their Derivatives ; 1.8.5 Integration Rule for Single Nbic Functions ; 1.8.6 Related Expressions Involving Differentiation and Integration.
|
505 |
8 |
|
|a 1.8.7 Interpretation and Representation in Terms of Circular Functions 1.9 Nbic Functions with Variable (2x, 2x) AND (2x, x) ; 1.9.1 Similarity of Forms ; 1.9.2 Single Nbic Function with Double Angle, N(2x, 2x) in Terms of, N(2x, x) ; 1.9.3 Some Examples Related to Nbic Functions with Variable (2x, 2x) and (2x, x) ; Chapter 2 Complex Nbic Function and Associated Topics ; 2.1 De Moivre's form Extended in Nbic Function ; 2.1.1 Complex Circular Function (Coci-function) ; 2.1.2 Complex Hyperbolic Function (Cohy-function).
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Trigonometry.
|
650 |
|
0 |
|a Mathematics.
|
650 |
|
6 |
|a Trigonométrie.
|
650 |
|
6 |
|a Mathématiques.
|
650 |
|
7 |
|a trigonometry.
|2 aat
|
650 |
|
7 |
|a Mathematics
|2 fast
|
650 |
|
7 |
|a Trigonometry
|2 fast
|
758 |
|
|
|i has work:
|a Advanced Trigonometric Relations Through Nbic Functions (Text)
|1 https://id.oclc.org/worldcat/entity/E39PD3RcFDky7JBWb8thKDWdgq
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3017437
|z Texto completo
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL3017437
|
994 |
|
|
|a 92
|b IZTAP
|