Cluster secondary ion mass spectrometry : principles and applications /
This book describes the importance of the emerging technique Cluster Secondary Ion Mass Spectrometry (SIMS), which is used for the analysis of a range of solid materials, including everything from organic and polymeric materials, to cells and semiconductors. The text covers a wide range of topics, e...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken, New Jersey :
Wiley,
©2013.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine generated contents note: 1.1. Secondary Ion Mass Spectrometry in a Nutshell / Greg Gillen / Christine M. Mahoney
- 1.1.1. SIMS Imaging / Greg Gillen / Christine M. Mahoney
- 1.1.2. SIMS Depth Profiling / Greg Gillen / Christine M. Mahoney
- 1.2. Basic Cluster SIMS Theory / Greg Gillen / Christine M. Mahoney
- 1.3. Cluster SIMS: An Early History / Greg Gillen / Christine M. Mahoney
- 1.3.1. Nonlinear Sputter Yield Enhancements / Greg Gillen / Christine M. Mahoney
- 1.3.2. Molecular Depth Profiling / Greg Gillen / Christine M. Mahoney
- 1.4. Recent Developments / Greg Gillen / Christine M. Mahoney
- 1.5. About this Book / Greg Gillen / Christine M. Mahoney
- Acknowledgment / Greg Gillen / Christine M. Mahoney
- References / Greg Gillen / Christine M. Mahoney
- 2.1. Introduction / Arnaud Delcorte / Bartlomiej Czerwinski / Oscar A. Restrepo
- 2.2. Molecular Dynamics Simulations of Sputtering with Clusters / Arnaud Delcorte / Bartlomiej Czerwinski / Oscar A. Restrepo
- 2.2.1. Cluster Effect / Arnaud Delcorte / Bartlomiej Czerwinski / Oscar A. Restrepo
- 2.2.2. Computer Simulations and the Molecular Dynamics "Experiment" / Arnaud Delcorte / Bartlomiej Czerwinski / Oscar A. Restrepo
- 2.2.3. Light and Heavy Element Clusters, and the Importance of Mass Matching / Arnaud Delcorte / Bartlomiej Czerwinski / Oscar A. Restrepo
- 2.2.4. Structural Effects in Organic Materials / Arnaud Delcorte / Bartlomiej Czerwinski / Oscar A. Restrepo
- 2.2.4.1. Amorphous Molecular Solids and Polymers / Arnaud Delcorte / Bartlomiej Czerwinski / Oscar A. Restrepo
- 2.2.4.2. Organic Crystals / Arnaud Delcorte / Bartlomiej Czerwinski / Oscar A. Restrepo
- 2.2.4.3. Thin Organic Layers on Metal Substrates / Arnaud Delcorte / Bartlomiej Czerwinski / Oscar A. Restrepo
- 2.2.4.4. Hybrid Metal[-]Organic Samples / Arnaud Delcorte / Bartlomiej Czerwinski / Oscar A. Restrepo
- 2.2.5. Induced Chemistry / Arnaud Delcorte / Bartlomiej Czerwinski / Oscar A. Restrepo
- 2.2.6. Multiple Hits and Depth Profiling / Arnaud Delcorte / Bartlomiej Czerwinski / Oscar A. Restrepo
- 2.2.7. From Small Polyatomic Projectiles to Massive Clusters / Arnaud Delcorte / Bartlomiej Czerwinski / Oscar A. Restrepo
- 2.2.7.1. Light-Element Clusters / Arnaud Delcorte / Bartlomiej Czerwinski / Oscar A. Restrepo
- 2.2.7.2. Large Argon Clusters / Arnaud Delcorte / Oscar A. Restrepo / Bartlomiej Czerwinski
- 2.2.7.3. Massive Gold Clusters / Arnaud Delcorte / Bartlomiej Czerwinski / Oscar A. Restrepo
- 2.3. Other Models / Arnaud Delcorte / Bartlomiej Czerwinski / Oscar A. Restrepo
- 2.3.1. Analytical Models: From Linear Collision Cascades to Fluid Dynamics / Arnaud Delcorte / Bartlomiej Czerwinski / Oscar A. Restrepo
- 2.3.2. Recent Developments and Hybrid Approaches / Arnaud Delcorte / Bartlomiej Czerwinski / Oscar A. Restrepo
- 2.4. Conclusions / Arnaud Delcorte / Bartlomiej Czerwinski / Oscar A. Restrepo
- Acknowledgments / Arnaud Delcorte / Bartlomiej Czerwinski / Oscar A. Restrepo
- References / Arnaud Delcorte / Bartlomiej Czerwinski / Oscar A. Restrepo
- 3.1. Introduction / Albert J. Fahey
- 3.2. Research Needs that have Influenced the Development of Primary Ion Sources for Sputtering / Albert J. Fahey
- 3.3. Functional Aspects of Various Ion Sources / Albert J. Fahey
- 3.3.1. Energy Spread in the Beam / Albert J. Fahey
- 3.3.2. Point-Source Ionization / Albert J. Fahey
- 3.3.3. Stable Emission / Albert J. Fahey
- 3.3.4. Ion Reactivity / Albert J. Fahey
- 3.3.5. Source Lifetime / Albert J. Fahey
- 3.3.6. Penetration Depth and Surface Energy Spread of the Projectile / Albert J. Fahey
- 3.4. Atomic Ion Sources / Albert J. Fahey
- 3.4.1. Field Emission / Albert J. Fahey
- 3.4.2. Radio Frequency (RF) Ionization / Albert J. Fahey
- 3.4.3. Electron Impact / Albert J. Fahey
- 3.4.4. Thermal Ionization / Albert J. Fahey
- 3.4.5. DC-Glow Discharge / Albert J. Fahey
- 3.4.6. Sputtering / Albert J. Fahey
- 3.5. Molecular Ion Sources / Albert J. Fahey
- 3.5.1. Field Emission / Albert J. Fahey
- 3.5.2. Radio Frequency Discharge / Albert J. Fahey
- 3.5.3. Electron Impact / Albert J. Fahey
- 3.5.4. DC-Glow Discharge / Albert J. Fahey
- 3.5.5. Sputtering / Albert J. Fahey
- 3.6. Cluster Ion Sources / Albert J. Fahey
- 3.6.1. Jets and Electron Impact (Massive Gas Clusters) / Albert J. Fahey
- 3.6.2. Field Emission / Albert J. Fahey
- 3.7. Summary / Albert J. Fahey
- References / Albert J. Fahey
- 4.1. Introduction / Christine M. Mahoney
- 4.2. Cluster Sources in Static SIMS / Christine M. Mahoney
- 4.2.1. Brief Introduction to Static SIMS / Christine M. Mahoney
- 4.2.2. Analysis beyond the Static Limit / Christine M. Mahoney
- 4.2.3. Increased Ion Yields / Christine M. Mahoney
- 4.2.4. Decreased Charging / Christine M. Mahoney
- 4.2.5. Surface Cleaning / Christine M. Mahoney
- 4.3. Experimental Considerations / Christine M. Mahoney
- 4.3.1. When to Employ Cluster Sources as Opposed to Atomic Sources / Christine M. Mahoney
- 4.3.2. Type of Cluster Source Used / Christine M. Mahoney
- 4.3.2.1. Liquid Metal Ion Gun (LMIG) / Christine M. Mahoney
- 4.3.2.2. C60+ for Mass Spectral Analysis and Imaging Applications / Christine M. Mahoney
- 4.3.2.3. Gas Cluster Ion Beam (GCIB) / Christine M. Mahoney
- 4.3.2.4. Au4004+ / Christine M. Mahoney
- 4.3.2.5. Other Sources / Christine M. Mahoney
- 4.3.3. Cluster Size Considerations / Christine M. Mahoney
- 4.3.4. Beam Energy / Christine M. Mahoney
- 4.3.5. Sample Temperature / Christine M. Mahoney
- 4.3.6. Matrix-Enhanced and Metal-Assisted Cluster SIMS / Christine M. Mahoney
- 4.3.7. Matrix Effects / Christine M. Mahoney
- 4.3.8. Other Important Factors / Christine M. Mahoney
- 4.4. Data Analysis Methods / Christine M. Mahoney
- 4.4.1. Principal Components Analysis / Christine M. Mahoney
- 4.4.1.1. Basic Principles of PCA / Christine M. Mahoney
- 4.4.1.2. Examples of PCA in the Literature / Christine M. Mahoney
- 4.4.2. Gentle SIMS (G-SIMS) / Christine M. Mahoney
- 4.5. Other Relevant Surface Mass-Spectrometry-Based Methods / Christine M. Mahoney
- 4.5.1. Desorption Electrospray Ionization (DESI) / Christine M. Mahoney
- 4.5.2. Plasma Desorption Ionization Methods / Christine M. Mahoney
- 4.5.3. Electrospray Droplet Impact Source for SIMS / Christine M. Mahoney
- 4.6. Advanced Mass Spectrometers for SIMS / Christine M. Mahoney
- 4.7. Conclusions / Christine M. Mahoney
- Appendix A: Useful Lateral Resolution / Christine M. Mahoney
- References / Christine M. Mahoney
- 5.1. Introduction / Christine M. Mahoney / Andreas Wucher
- 5.2. Historical Perspectives / Christine M. Mahoney / Andreas Wucher
- 5.3. Depth Profiling in Heterogeneous Systems / Christine M. Mahoney / Andreas Wucher
- 5.3.1. Introduction / Christine M. Mahoney / Andreas Wucher
- 5.3.2. Quantitative Depth Profiling / Christine M. Mahoney / Andreas Wucher
- 5.3.3. Reconstruction of 3D Images / Christine M. Mahoney / Andreas Wucher
- 5.3.4. Matrix Effects in Heterogeneous Systems / Christine M. Mahoney / Andreas Wucher
- 5.4. Erosion Dynamics Model of Molecular Sputter Depth Profiling / Christine M. Mahoney / Andreas Wucher
- 5.4.1. Parent Molecule Dynamics / Christine M. Mahoney / Andreas Wucher
- 5.4.2. Constant Erosion Rate / Christine M. Mahoney / Andreas Wucher
- 5.4.3. Fluence-Dependent Erosion Rate / Christine M. Mahoney / Andreas Wucher
- 5.4.4. Using Mass Spectrometric Signal Decay to Measure Damage Parameters / Christine M. Mahoney / Andreas Wucher
- 5.4.5. Surface Transients / Christine M. Mahoney / Andreas Wucher
- 5.4.6. Fragment Dynamics / Christine M. Mahoney / Andreas Wucher
- 5.4.7. Conclusions / Christine M. Mahoney / Andreas Wucher
- 5.5. Chemistry of Atomic Ion Beam Irradiation in Organic Materials / Christine M. Mahoney / Andreas Wucher
- 5.5.1. Introduction / Christine M. Mahoney / Andreas Wucher
- 5.5.2. Understanding the Basics of Ion Irradiation Effects in Molecular Solids / Christine M. Mahoney / Andreas Wucher
- 5.5.3. Ion Beam Irradiation and the Gel Point / Christine M.
- Mahoney / Andreas Wucher
- 5.5.4. Chemistry of Cluster Ion Beams / Christine M. Mahoney / Andreas Wucher
- 5.5.5. Chemical Structure Changes and Corresponding Changes in Depth Profile Shapes / Christine M. Mahoney / Andreas Wucher
- 5.6. Optimization of Experimental Parameters for Organic Depth Profiling / Christine M. Mahoney / Andreas Wucher
- 5.6.1. Introduction / Christine M. Mahoney / Andreas Wucher
- 5.6.2. Organic Delta Layers for Optimization of Experimental Parameters / Christine M. Mahoney / Andreas Wucher
- 5.6.3. Sample Temperature / Christine M. Mahoney / Andreas Wucher
- 5.6.4. Understanding the Role of Beam Energy During Organic Depth Profiling / Christine M. Mahoney / Andreas Wucher
- 5.6.5. Optimization of Incidence Angle / Christine M. Mahoney / Andreas Wucher
- 5.6.6. Effect of Sample Rotation / Christine M. Mahoney / Andreas Wucher
- 5.6.7. Ion Source Selection / Christine M. Mahoney / Andreas Wucher
- 5.6.7.1. SF5+ and Other Small Cluster Ions / Christine M. Mahoney / Andreas Wucher
- 5.6.7.2. C60n+ and Similar Carbon Cluster Sources / Christine M. Mahoney / Andreas Wucher
- 5.6.7.3. Gas Cluster Ion Beam (GCIB) / Christine M. Mahoney / Andreas Wucher
- 5.6.7.4. Low Energy Reactive Ion Beams / Christine M. Mahoney / Andreas Wucher.
- Note continued: 5.6.7.5. Electrospray Droplet Impact (EDI) Source for SIMS / Christine M. Mahoney / Andreas Wucher
- 5.6.7.6. Liquid Metal Ion Gun Clusters (Bi3+ and Au3+) / Christine M. Mahoney / Andreas Wucher
- 5.6.8. C60+/Ar+ Co-sputtering / Christine M. Mahoney / Andreas Wucher
- 5.6.9. Chamber Backfilling with a Free Radical Inhibitor Gas / Christine M. Mahoney / Andreas Wucher
- 5.6.10. Other Considerations for Organic Depth Profiling Experiments / Christine M. Mahoney / Andreas Wucher
- 5.6.11. Molecular Depth Profiling: Novel Approaches and Methods / Christine M. Mahoney / Andreas Wucher
- 5.7. Conclusions / Christine M. Mahoney / Andreas Wucher
- References / Christine M. Mahoney / Andreas Wucher
- 6.1. Introduction / Gregory L. Fisher / Andreas Wucher / Christine M. Mahoney
- 6.2. General Strategies / Christine M. Mahoney / Gregory L. Fisher / Andreas Wucher
- 6.2.1. Three-Dimensional Sputter Depth Profiling / Andreas Wucher / Gregory L. Fisher / Christine M. Mahoney
- 6.2.2. Wedge Beveling / Christine M. Mahoney / Gregory L. Fisher / Andreas Wucher
- 6.2.3. Physical Cross Sectioning / Andreas Wucher / Gregory L. Fisher / Christine M. Mahoney
- 6.2.4. FIB-ToF Tomography / Christine M. Mahoney / Gregory L. Fisher / Andreas Wucher
- 6.3. Important Considerations for Accurate 3D Representation of Data / Andreas Wucher / Gregory L. Fisher / Christine M. Mahoney
- 6.3.1. Beam Rastering Techniques / Christine M. Mahoney / Gregory L. Fisher / Andreas Wucher
- 6.3.2. Geometry Effects / Andreas Wucher / Christine M. Mahoney / Gregory L. Fisher
- 6.3.3. Depth Scale Calibration / Andreas Wucher / Gregory L. Fisher / Christine M. Mahoney
- 6.4. Three-Dimensional Image Reconstruction / Christine M. Mahoney / Andreas Wucher / Gregory L. Fisher
- 6.5. Damage and Altered Layer Depth / Christine M. Mahoney / Andreas Wucher / Gregory L. Fisher
- 6.6. Biological Samples / Gregory L. Fisher / Christine M. Mahoney / Andreas Wucher
- 6.7. Conclusions / Andreas Wucher / Christine M. Mahoney / Gregory L. Fisher
- References / Andreas Wucher / Christine M. Mahoney / Gregory L. Fisher
- 7.1. Introduction / Joe Bennett / Greg Gillen
- 7.2. Primary Particle[-]Substrate Interactions / Joe Bennett / Greg Gillen
- 7.2.1. Collisional Mixing and Depth Resolution / Joe Bennett / Greg Gillen
- 7.2.2. Transient Effects / Joe Bennett / Greg Gillen
- 7.2.3. Sputter-Induced Roughening / Joe Bennett / Greg Gillen
- 7.3. Possible Improvements in SIMS Depth Profiling-The Use of Cluster Primary Ion Beams / Joe Bennett / Greg Gillen
- 7.4. Development of Cluster SIMS for Depth Profiling Analysis / Joe Bennett / Greg Gillen
- 7.4.1. CF3+ Primary Ion Beams / Joe Bennett / Greg Gillen
- 7.4.2. NO2+ and O3+ Primary Ion Beams / Joe Bennett / Greg Gillen
- 7.4.3. SF5+ Polyatomic Primary Ion Beams / Joe Bennett / Greg Gillen
- 7.4.4. CSC6- and C8- Depth Profiling / Joe Bennett / Greg Gillen
- 7.4.5. Os3(CO)12 and Ir4(CO)12 Primary Ion Beams / Joe Bennett / Greg Gillen
- 7.4.6. C60+ Primary Ion Beams / Joe Bennett / Greg Gillen
- 7.4.7. Massive Gaseous Cluster Ion Beams / Joe Bennett / Greg Gillen
- 7.5. Conclusions and Future Prospects / Joe Bennett / Greg Gillen
- References / Joe Bennett / Greg Gillen
- 8.1. Introduction / Nick Winograd / John Vickerman
- 8.2. Capabilities of TOF-SIMS for Biological Analysis / Nick Winograd / John Vickerman
- 8.3. New Hybrid TOF-SIMS Instruments / Nick Winograd / John Vickerman
- 8.3.1. Introduction / Nick Winograd / John Vickerman
- 8.3.2. Benefits of New DC Beam Technologies / Nick Winograd / John Vickerman
- 8.4. Challenges in the Use of TOF-SIMS for Biological Analysis / Nick Winograd / John Vickerman
- 8.4.1. Sample Handling of Biological Samples for Analysis in Vacuum / Nick Winograd / John Vickerman
- 8.4.2. Analysis is Limited to Small to Medium Size Molecules / Nick Winograd / John Vickerman
- 8.4.3. Ion Yields Limit Useful Spatial Resolution for Molecular Analysis to not Much Better than 1 / Nick Winograd / John Vickerman
- 8.4.4. Matrix Effects Inhibit Application in Discovery Mode and Greatly Complicates Quantification / Nick Winograd / John Vickerman
- 8.4.5. Complexity of Biological Systems can Result in Data Sets that Need Multivariate Analysis (MVA) to Unravel / Nick Winograd / John Vickerman
- 8.5. Examples of Biological Studies Using Cluster-TOF-SIMS / John Vickerman / Nick Winograd
- 8.5.1. Analysis of Tissue / Nick Winograd / John Vickerman
- 8.5.2. Drug Location in Tissue / Nick Winograd / John Vickerman
- 8.5.3. Microbial Mat-Surface and Subsurface Analysis in Streptomyces / Nick Winograd / John Vickerman
- 8.5.4. Cells / Nick Winograd / John Vickerman
- 8.5.5. Depth Scale Measurement / Nick Winograd / John Vickerman
- 8.5.6. High Throughput Biomaterials Characterization / Nick Winograd / John Vickerman
- 8.6. Final Thoughts and Future Directions / Nick Winograd / John Vickerman
- Acknowledgments / Nick Winograd / John Vickerman
- References / Nick Winograd / John Vickerman
- 9.1. Introduction / Christine M. Mahoney / Peter Williams
- 9.2. Cluster Niche / Peter Williams / Christine M. Mahoney
- 9.3. Cluster Types / Peter Williams / Christine M. Mahoney
- 9.4. Challenge of Massive Molecular Ion Ejection / Christine M. Mahoney / Peter Williams
- 9.4.1. Comparing with MALDI: The Gold Standard / Peter Williams / Christine M. Mahoney
- 9.4.2. Particle Impact Techniques / Peter Williams / Christine M. Mahoney
- 9.5. Ionization / Peter Williams / Christine M. Mahoney
- 9.5.1. "Preformed" Ions / Christine M. Mahoney / Peter Williams
- 9.5.2. Radical Ions and Ion Fragments / Christine M. Mahoney / Peter Williams
- 9.5.3. Ionization Processes for Massive Clusters / Peter Williams / Christine M. Mahoney
- 9.6. Matrix Effects and Challenges in Quantitative Analysis / Christine M. Mahoney / Peter Williams
- 9.7. SIMS Instrumentation / Peter Williams / Christine M. Mahoney
- 9.7.1. Massive Cluster Ion Source Technology / Christine M. Mahoney / Peter Williams
- 9.8. Prospects for Biological Imaging / Peter Williams / Christine M. Mahoney
- 9.9. Conclusions / Christine M. Mahoney / Peter Williams
- References / Peter Williams / Christine M. Mahoney.