Biomimetic robotic artificial muscles /
Biomimetic Robotic Artificial Muscles presents a comprehensive up-to-date overview of several types of electroactive materials with a view of using them as biomimetic artificial muscles. The purpose of the book is to provide a focused, in-depth, yet self-contained treatment of recent advances made i...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Singapore ; Hackensack, NJ :
World Scientific,
©2013.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- 1. Introduction
- 2. Physical principles of ionic polymer-metal composites. 2.1. Introduction. 2.2. Manufacturing IPMC materials. 2.3. IPMC electrode selection and associated electrode models. 2.4. Actuation behavior and mechanism of IPMCs. 2.5. More complex configurations of IPMC actuators
- 3. New IPMC materials and mechanisms. 3.1. Multi-field responsive IPMCs. 3.2. IPMCs loaded with multiwalled carbon nanotubes. 3.3. IPMCs incorporating ZnO thin film. 3.4. A self-oscillating IPMC
- 4. A systems perspective on modeling of ionic polymer-metal composites. 4.1. Introduction. 4.2. A physics-based, control-oriented model. 4.3. A dynamic model for IPMC sensors. 4.4. A nonlinear model for IPMC actuators
- 5. Conjugated polymer actuators: modeling and control. 5.1. Introduction. 5.2. Trilayer PPy actuators. 5.3. A scalable electro-chemo-mechanical model. 5.4. Robust adaptive control of conjugated polymer actuators. 5.5. Redox level-dependent admittance model. 5.6. Nonlinear elasticity-based modeling of large bending deformation. 5.7. Nonlinear mechanics-motivated torsional actuator
- 6. Synthetic dielectric elastomer materials. 6.1. Introduction. 6.2. Requirements of dielectric elastomer actuator. 6.3. Synthetic elastomer. 6.4. Effects of additives on actuating performance. 6.5. Discussion
- 7. Dielectric elastomer actuator. 7.1. Introduction. 7.2. Multi-stacked actuator. 7.3. Controller of multi-stacked actuator. 7.4. Discussion
- 8. Integrated sensory feedback for EAP actuators. 8.1. Introduction. 8.2. Basic IPMC-PVDF sensori-actuator structure. 8.3. Application to microinjection of drosophila embryos. 8.4. Simultaneous densing of displacement and force. 8.5. Demonstration in feedback control experiments. 8.6. Self-sensing behavior of IPMCs
- 9. Device and robotic applications of EAPs. 9.1. Modeling of IPMC-actuated robotic fish. 9.2. IPMCs as energy harvesters. 9.3. IPMC actuator-driven valveless micropump. 9.4. PPy petals-actuated micropump. 9.5. Multi-jointed robotic finger driven by dielectric elastomer actuator
- 10. Closing.