|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
EBOOKCENTRAL_ocn840302404 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o e |
007 |
cr nn||||||||| |
008 |
121227s1992 gw ob 001 0 eng d |
040 |
|
|
|a I9W
|b eng
|e pn
|c I9W
|d OCLCO
|d OCLCQ
|d UV0
|d OCLCO
|d GW5XE
|d OCLCF
|d UA@
|d COO
|d OCLCQ
|d EBLCP
|d OCLCQ
|d YDX
|d UAB
|d OCLCQ
|d U3W
|d AU@
|d OCLCQ
|d LEAUB
|d UKBTH
|d OCLCQ
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 934994957
|a 936317423
|a 968663698
|a 1058790411
|a 1086466774
|a 1113746256
|
020 |
|
|
|a 9783662001745
|q (electronic bk.)
|
020 |
|
|
|a 3662001748
|q (electronic bk.)
|
020 |
|
|
|a 9783662001769
|q (print)
|
020 |
|
|
|a 3662001764
|q (print)
|
024 |
7 |
|
|a 10.1007/978-3-662-00174-5
|2 doi
|
029 |
1 |
|
|a AU@
|b 000051659963
|
029 |
1 |
|
|a NLGGC
|b 401966623
|
029 |
1 |
|
|a NZ1
|b 15005620
|
029 |
1 |
|
|a NZ1
|b 15306212
|
029 |
1 |
|
|a AU@
|b 000073976547
|
035 |
|
|
|a (OCoLC)840302404
|z (OCoLC)934994957
|z (OCoLC)936317423
|z (OCoLC)968663698
|z (OCoLC)1058790411
|z (OCoLC)1086466774
|z (OCoLC)1113746256
|
050 |
|
4 |
|a QA241-247.5
|
072 |
|
7 |
|a PBH
|2 bicssc
|
072 |
|
7 |
|a MAT022000
|2 bisacsh
|
072 |
|
7 |
|a PBH
|2 thema
|
082 |
0 |
4 |
|a 512.7
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Lint, J. H.
|
245 |
1 |
0 |
|a Introduction to Coding Theory /
|c by J.H. Lint.
|
250 |
|
|
|a Second edition.
|
260 |
|
|
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint :
|b Springer,
|c 1992.
|
300 |
|
|
|a 1 online resource (XII, 186 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|
347 |
|
|
|b PDF
|
490 |
1 |
|
|a Graduate Texts in Mathematics, 0072-5285 ;
|v 86
|
520 |
|
|
|a The first edition of this book was very well received and is considered to be one of the classical introductions to the subject of discrete mathematics- a field that is still growing in importance as the need for mathematiciansand computer scientists in industry continues to grow. The opening chapter is a memory-refresher reviewing the prerequisite mathematical knowledge. The body of the book contains two parts (five chapters each): a rigorous mathematically oriented first course in coding theory, followedby introductions to special topics; these can be used as a second semester, as supplementary reading, or as preparation for studying the literature. Among the special features are chapters on arithmetic codes and convolutional codes, and exercises with complete solutions.
|
505 |
0 |
|
|a 1 Mathematical Background -- 1.1. Algebra -- 1.2. Krawtchouk Polynomials -- 1.3. Combinatorial Theory -- 1.4. Probability Theory -- 2 Shannon's Theorem -- 2.1. Introduction -- 2.2. Shannon's Theorem -- 2.3. Comments -- 2.4. Problems -- 3 Linear Codes -- 3.1. Block Codes -- 3.2. Linear Codes -- 3.3. Hamming Codes -- 3.4. Majority Logic Decoding -- 3.5. Weight Enumerators -- 3.6. Comments -- 3.7. Problems -- 4 Some Good Codes -- 4.1. Hadamard Codes and Generalizations -- 4.2. The Binary Golay Code -- 4.3. The Ternary Golay Code -- 4.4. Constructing Codes from Other Codes -- 4.5. Reed-Muller Codes -- 4.6. Kerdock Codes -- 4.7. Comments -- 4.8. Problems -- 5 Bounds on Codes -- 5.1. Introduction: The Gilbert Bound -- 5.2. Upper Bounds -- 5.3. The Linear Programming Bound -- 5.4. Comments -- 5.5. Problems -- 6 Cyclic Codes -- 6.1. Definitions -- 6.2. Generator Matrix and Check Polynomial -- 6.3. Zeros of a Cyclic Code -- 6.4. The Idempotent of a Cyclic Code -- 6.5. Other Representations of Cyclic Codes -- 6.6. BCH Codes -- 6.7. Decoding BCH Codes -- 6.8. Reed-Solomon Codes and Algebraic Geometry Codes -- 6.9. Quadratic Residue Codes -- 6.10. Binary Cyclic codes of length 2n (n odd) -- 6.11. Comments -- 6.12. Problems -- 7 Perfect Codes and Uniformly Packed Codes -- 7.1. Lloyd's Theorem -- 7.2. The Characteristic Polynomial of a Code -- 7.3. Uniformly Packed Codes -- 7.4. Examples of Uniformly Packed Codes -- 7.5. Nonexistence Theorems -- 7.6. Comments -- 7.7. Problems -- 8 Goppa Codes -- 8.1. Motivation -- 8.2. Goppa Codes -- 8.3. The Minimum Distance of Goppa Codes -- 8.4. Asymptotic Behaviour of Goppa Codes -- 8.5. Decoding Goppa Codes -- 8.6. Generalized BCH Codes -- 8.7. Comments -- 8.8. Problems -- 9 Asymptotically Good Algebraic Codes -- 9.1. A Simple Nonconstructive Example -- 9.2. Justesen Codes -- 9.3. Comments -- 9.4. Problems -- 10 Arithmetic Codes -- 10.1. AN Codes -- 10.2. The Arithmetic and Modular Weight -- 10.3. Mandelbaum-Barrows Codes -- 10.4. Comments -- 10.5. Problems -- 11 Convolutional Codes -- 11.1. Introduction -- 11.2. Decoding of Convolutional Codes -- 11.3. An Analog of the Gilbert Bound for Some Convolutional Codes -- 11.4. Construction of Convolutional Codes from Cyclic Block Codes -- 11.5. Automorphisms of Convolutional Codes -- 11.6. Comments -- 11.7. Problems -- Hints and Solutions to Problems -- References.
|
504 |
|
|
|a Includes bibliographical references and index.
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Mathematics.
|
650 |
|
0 |
|a Combinatorial analysis.
|
650 |
|
0 |
|a Number theory.
|
650 |
|
6 |
|a Mathématiques.
|
650 |
|
6 |
|a Analyse combinatoire.
|
650 |
|
6 |
|a Théorie des nombres.
|
650 |
|
7 |
|a mathematics.
|2 aat
|
650 |
|
7 |
|a applied mathematics.
|2 aat
|
650 |
|
7 |
|a Combinatorial analysis
|2 fast
|
650 |
|
7 |
|a Mathematics
|2 fast
|
650 |
|
7 |
|a Number theory
|2 fast
|
776 |
0 |
8 |
|i Printed edition:
|z 9783662001769
|
830 |
|
0 |
|a Graduate texts in mathematics ;
|v 86.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3098533
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3098533
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13364534
|
994 |
|
|
|a 92
|b IZTAP
|