Cargando…

Insect molecular genetics : an introduction to principles and applications /

This book summarizes and synthesizes two rather disparate disciplines-entomology and molecular genetics. It provides an introduction to the techniques and literature of molecular genetics; defines terminology; and reviews concepts, principles, and applications of these powerful tools.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hoy, Marjorie A. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Academic Press, [2013]
Edición:Third edition.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Note continued: 9.3.P Elements and Hybrid Dysgenesis
  • 9.4.P-Element Structure Varies
  • 9.5. Transposition Method of P Elements
  • 9.6. Origin of P Elements in D. melanogaster
  • 9.7.P Vectors and Germ-Line Transformation
  • 9.7.1. Protocols
  • 9.7.2. Characterizing Transformants
  • 9.8. Using P-Element Vectors
  • 9.8.1. Transposon Tagging
  • 9.8.2. Expressing Exogenous Genes
  • 9.8.3. Evaluating Position Effects
  • 9.8.4. Targeted Gene Transfer
  • 9.9. Transformation of Other Insects with P Vectors
  • 9.10. Evolution of Resistance to P Elements
  • 9.11. Using P to Drive Genes into Populations
  • 9.12. Relationship of P to Other Transposable Elements (TEs)
  • 9.13. Other TEs Can Transform D. melanogaster
  • 9.14. Improved Transformation Tools for Drosophila
  • 9.15. TE Vectors to Transform Insects other than Drosophila
  • 9.15.1.piggyBac
  • 9.15.2. Hermes and Herves
  • 9.15.3. Minos
  • 9.15.4.mariner
  • 9.15.5.hobo
  • 9.16. Cross Mobilization of TE Vectors
  • 9.17. Conversion of Inactive TE Vectors to Activity
  • 9.18. Suppression of Transgene Expression
  • 9.19. Other Transformation Methods
  • 9.19.1. JcDNV Gene Vectors for Somatic Transformations v
  • 9.19.2. RNAi for Drosophila
  • 9.19.3. Zinc-Finger Nucleases (ZFNs)
  • 9.19.4. Transcription Activator-Like Effector Nucleases (TALENs)
  • 9.19.5. Meganucleases (or Homing Endonucleases)
  • 9.19.6. Cell-Penetrating Peptides
  • 9.19.7. Nanotechnology Approaches
  • 9.20. Conclusions
  • General References
  • References Cited
  • pt. III APPLICATIONS IN ENTOMOLOGY
  • ch. 10 Sex Determination in Insects
  • 10.1. Overview
  • 10.2. Introduction
  • 10.3. Costs and Benefits of Sexual Reproduction
  • 10.3.1. Sexual Reproduction Has Costs
  • 10.3.2. Advantages of Sex Must Be Large
  • 10.3.3. Origin of Sex
  • 10.4. Sex Determination Involves Soma and Germ-Line Tissues
  • 10.5. Sex Determination in Drosophila melanogaster
  • 10.5.1. Dosage Compensation of X Chromosomes
  • 10.5.2. Somatic-Sex Determination
  • 10.5.3. Germ-Line Determination
  • 10.6. Are Sex-Determination Mechanisms Diverse?
  • 10.6.1. Intraspecific Variability
  • 10.6.2. Environmental Effects
  • 10.6.3. Postzygotic Sex Determination
  • 10.7.A Single Model?
  • 10.8. Meiotic Drive Can Distort Sex Ratios
  • 10.8.1. Segregation Distorter (SD)
  • 10.8.2. Distorter in Mosquitoes
  • 10.8.3. Female-Biased Sex Ratios in Stalk-Eyed Flies
  • 10.8.4. Meiotic Drive as a Pest-Management Tool?
  • 10.9. Hybrid Sterility
  • 10.10. Medea in Tribolium
  • 10.11. Cytoplasmic Agents Distort Normal Sex Ratios
  • 10.11.1. Spiroplasma Strains
  • 10.11.2.L-Form Bacteria
  • 10.11.3. Rickettsia
  • 10.11.4. Wolbachia
  • 10.11.5. Cardinium
  • 10.12. Paternal Sex-Ratio Chromosomes and Cytoplasmic Incompatibility in Nasonia
  • 10.13. Male Killing in the Coccinellidae
  • 10.14. Sex and the Sorted Insects
  • 10.14.1. Genetic Control
  • 10.14.2. Genetic Improvement of Parasitoids
  • 10.15. Conclusion
  • References Cited
  • ch. 11 Molecular Genetics of Insect Behavior
  • 11.1. Overview
  • 11.2. Introduction
  • 11.3. The Insect Nervous System
  • 11.4. Traditional Genetic Analyses of Behavior
  • 11.4.1. Crossing Experiments
  • 11.4.2. Selection Experiments
  • 11.4.3. Some Polygenically Determined Behaviors
  • 11.5. Molecular-Genetic Analyses of Insect Behavior
  • 11.5.1. The Photoperiodic Clock
  • 11.5.2. Learning in Drosophila
  • 11.5.3. Functional Genomics of Odor Behavior in Drosophila
  • 11.5.4. Behavior of Apis mellifera
  • 11.5.5. Pheromones in Insects
  • 11.5.6. Neurobiochemistry of Drosophila
  • 11.5.7. Divergent Functions of Est-6 and Est-5 in Two Drosophila Species: A Cautionary Tale of Homologs
  • 11.5.8. Courtship Behavior in Drosophila
  • 11.5.9. Speciation Genes in Drosophila and Other Insects
  • 11.5.10. Personality in Insects: Tribolium confusum, Apis mellifera, Acyrthosiphon pisum, and Pyrrhocoris apterus
  • 11.6. Symbionts and Insect Behavior
  • 11.7. Human Neurodegenerative Diseases and Addictions in Drosophila
  • 11.8. High-Throughput Ethomics
  • 11.9. Systems Genetics of Complex Traits in Drosophila
  • 11.10. Social Behavior in Bees and Ants
  • 11.11. Conclusions
  • References Cited
  • ch. 12 Molecular Systematics and the Evolution of Arthropods
  • 12.1. Overview
  • 12.2. Introduction
  • 12.3. Controversies in Molecular Systematics and Evolution
  • 12.3.1. Molecular versus Morphological Traits
  • 12.3.2. The Molecular Clock
  • 12.3.3. The Neutral (or Nearly Neutral) Theory of Evolution
  • 12.3.4. Homology and Similarity
  • 12.4. Molecular Methods for Molecular Systematics and Evolution
  • 12.4.1. Protein Electrophoresis
  • 12.4.2. Molecular Cytology
  • 12.4.3. Restriction Fragment Length Polymorphism (RFLP) Analysis
  • 12.4.4. DNA and Genome Sequencing
  • 12.4.5. Fragment Analyses of Genomic DNA
  • 12.5. Targets of DNA Analysis
  • 12.5.1. Mitochondria
  • 12.5.2. Ribosomal RNA
  • 12.5.3. Satellite DNA
  • 12.5.4. Introns
  • 12.5.5. Nuclear Protein-Coding Genes
  • 12.5.6. Rare Genomic Changes
  • 12.5.7. MicroRNAs
  • 12.6. Steps in Phylogenetic Analysis of DNA Sequence Data
  • 12.6.1. Gene Trees or Species Trees
  • 12.6.2. Rooted or Unrooted Trees
  • 12.6.3. Tree Types
  • 12.6.4. Project Goals and Appropriate DNA Sequences
  • 12.6.5. Sequence Comparisons with BLAST
  • 12.6.6. Aligning Sequences
  • 12.6.7. Constructing Phylogenies
  • 12.6.8. Artifacts
  • 12.6.9. Software Packages
  • 12.7. The Universal Tree of Life
  • 12.7.1. Two Domains
  • 12.7.2. Three Domains
  • 12.7.3. Origin of Eukaryota
  • 12.8. The Fossil Record of Arthropods
  • 12.9. Molecular Analyses of Arthropod Phylogeny
  • 12.9.1. Evolution of the Ecdysozoa
  • 12.9.2. Relationships among the Arthropoda
  • 12.9.3. The Phylogeny of the Holometabola
  • 12.9.4. Congruence Between Morphology- and Molecular-Based Trees
  • 12.9.5. Genomes and Arthropod Phylogenies
  • 12.10. Molecular Evolution and Speciation
  • 12.10.1. Species Concepts
  • 12.10.2. How Many Genes are Involved in Speciation?
  • 12.10.3. Detecting Cryptic Species
  • 12.11. Some Conclusions
  • Relevant Journals
  • References Cited
  • ch. 13 Insect Population Ecology and Molecular Genetics
  • 13.1. Overview
  • 13.2. Introduction
  • 13.3. What is Molecular Ecology?
  • 13.4. Collecting Arthropods in the Field for Analysis
  • 13.5. Molecular Ecological Methods
  • 13.5.1. Allele-Specific PCR
  • 13.5.2. Allozymes (Protein Electrophoresis)
  • 13.5.3. Amplified Fragment Length Polymorphisms (AFLP-PCR)
  • 13.5.4. Double-Strand Conformation Polymorphism (DSCP)
  • 13.5.5. Heteroduplex Analysis (HDA)
  • 13.5.6. Microarrays
  • 13.5.7. Microsatellites
  • 13.5.8. RFLP Analysis
  • 13.5.9. PCR-RFLP
  • 13.5.10. RAPD-PCR
  • 13.5.11. Sequencing
  • 13.5.12. Single Nucleotide Polymorphism (SNP) Markers
  • 13.6. Analysis of Molecular Data
  • 13.6.1. Allozymes
  • 13.6.2. Microsatellites
  • 13.6.3. RAPD-PCR
  • 13.6.4. RFLPs
  • 13.6.5. Sequencing
  • 13.7. Case Studies in Molecular Ecology and Population Biology
  • 13.7.1. Genetic Variability in the Fall Army worm: Incipient Species or Multiple Species?
  • 13.7.2. Analyses of Natural Enemies
  • 13.7.3. Population Isolation and Introgression in Periodical Cicadas
  • 13.7.4. Eradicating Medflies in California?
  • 13.7.5. Plant Defenses to Insect Herbivory
  • 13.7.6. Origins of Insect Populations
  • 13.8. Applied Pest Management
  • 13.8.1. Monitoring Biotypes, Species, and Cryptic Species
  • 13.8.2. Monitoring Vectors of Disease
  • 13.8.3. Pesticide Resistances and Pest Management
  • 13.8.4. Monitoring Pest-Population Biology
  • 13.8.5. The "So What?" Test
  • Relevant Journals
  • References Cited
  • ch. 14 Genetic Modification of Pest and Beneficial Insects for Pest-Management Programs
  • 14.1. Overview
  • 14.2. Introduction
  • 14.3. Why Genetically Modify Insects?
  • 14.3.1. Beneficial Insects
  • 14.3.2. Pest Insects
  • 14.4. Why Use Molecular-Genetic Methods?
  • 14.5. What Genetic Modification Methods are Available?
  • 14.5.1. Transposable-Element (TE) Vectors and Transgenesis
  • 14.5.2. Paratransgenesis (Genetic Modification of Symbionts)
  • 14.5.3. Viral Vectors
  • 14.5.4. Transfer of Wolbachia from Another Arthropod
  • 14.5.5. Site-Specific Modifications
  • 14.5.6. No Vectors
  • 14.5.7. RNAi to Control Pests
  • 14.6. Methods to Deliver Exogenous Nucleic Acids into Arthropod Tissues
  • 14.7. What Genes are Available?
  • 14.8. Why are Regulatory Signals Important?
  • 14.9. How are Modified Arthropods Identified?
  • 14.10. How to Deploy Genetically Modified Pest and Beneficial Arthropods
  • 14.11.
  • Potential Risks Associated with Releases of Genetically Modified Arthropods
  • 14.11.1. Could Gene Silencing Reduce Program Effectiveness?
  • 14.11.2. Relative Risks
  • 14.11.3. General Risk Issues
  • 14.11.4. Horizontal Transfer (HT)
  • 14.12. Permanent Releases of Genetically Modified Arthropods into the Environment
  • 14.12.1. Models to Predict?
  • 14.13. Regulatory Issues: Releases of Genetically Modified Arthropods
  • 14.14. Conclusions
  • References Cited.