|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn834530931 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr mn||||||||| |
008 |
130402t20132012riua ob 001 0 eng d |
040 |
|
|
|a OSU
|b eng
|e rda
|e pn
|c OSU
|d OCLCA
|d OCLCQ
|d OCLCF
|d UIU
|d N$T
|d E7B
|d EBLCP
|d DEBSZ
|d OCLCQ
|d NJR
|d OCLCQ
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|d OCLCQ
|d OCLCL
|
019 |
|
|
|a 922965005
|a 1011786555
|
020 |
|
|
|a 9780821898741
|q (electronic bk.)
|
020 |
|
|
|a 0821898744
|q (electronic bk.)
|
020 |
|
|
|z 9780821872949
|q (alk. paper)
|
020 |
|
|
|z 082187294X
|q (alk. paper)
|
029 |
1 |
|
|a CHBIS
|b 009782099
|
029 |
1 |
|
|a DEBSZ
|b 452554829
|
029 |
1 |
|
|a AU@
|b 000062344993
|
029 |
1 |
|
|a AU@
|b 000069468044
|
035 |
|
|
|a (OCoLC)834530931
|z (OCoLC)922965005
|z (OCoLC)1011786555
|
050 |
|
4 |
|a QA171.485
|b .L36 2013eb
|
072 |
|
7 |
|a MAT
|x 012000
|2 bisacsh
|
082 |
0 |
4 |
|a 516.3/5
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Lam, Thomas,
|d 1980-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjFmwHYtBGccM63r37KxcP
|
245 |
1 |
4 |
|a The poset of k-shapes and branching rules for k-Schur functions /
|c Thomas Lam, Luc Lapointe, Jennifer Morse, Mark Shimozono.
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c [2013]
|
264 |
|
4 |
|c ©2012
|
300 |
|
|
|a 1 online resource (v, 101 pages) :
|b illustrations (some color).
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v number 1050
|
500 |
|
|
|a "May 2013, Volume 223, Number 1050 (fourth of 5 numbers)."
|
504 |
|
|
|a Includes bibliographical references (page 101) and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a ""Contents""; ""Abstract""; ""Chapter 1. Introduction""; ""1.1.-Schur functions and branching coefficients""; ""1.2. The poset of -shapes""; ""1.3.-shape functions""; ""1.4. Geometric meaning of branching coefficients""; ""1.5.-branching polynomials and strong -tableaux""; ""1.6. Tableaux atoms and bijection (1.20)""; ""1.7. Connection with representation theory""; ""1.8. Outline""; ""Acknowledgments""; ""Chapter 2. The poset of -shapes""; ""2.1. Partitions""; ""2.2.-shapes""; ""2.3. Strings""; ""2.4. Moves""; ""2.5. Poset structure on -shapes""
|
505 |
8 |
|
|a ""2.6. String and move miscellany""""Chapter 3. Equivalence of paths in the poset of -shapes""; ""3.1. Diamond equivalences""; ""3.2. Elementary equivalences""; ""3.3. Mixed elementary equivalence""; ""3.4. Interfering row moves and perfections""; ""3.5. Row elementary equivalence""; ""3.6. Column elementary equivalence""; ""3.7. Diamond equivalences are generated by elementary equivalences""; ""3.8. Proving properties of mixed equivalence""; ""3.9. Proving properties of row equivalence""; ""3.10. Proofs of Lemma 3.18 and Lemma 3.19""; ""Chapter 4. Strips and tableaux for -shapes""
|
505 |
8 |
|
|a ""4.1. Strips for cores""""4.2. Strips for -shapes""; ""4.3. Maximal strips and tableaux""; ""4.4. Elementary properties of \ _{\ }^{()} and \ _{\ }^{()}""; ""4.5. Basics on strips""; ""4.6. Augmentation of strips""; ""4.7. Maximal strips for cores""; ""4.8. Equivalence of maximal augmentation paths""; ""4.9. Canonical maximization of a strip""; ""Chapter 5. Pushout of strips and row moves""; ""5.1. Reasonableness""; ""5.2. Contiguity""; ""5.3. Interference of strips and row moves""; ""5.4. Row-type pushout: non-interfering case""
|
505 |
8 |
|
|a ""5.5. Row-type pushout: interfering case""""5.6. Alternative description of pushouts (row moves)""; ""Chapter 6. Pushout of strips and column moves""; ""6.1. Reasonableness""; ""6.2. Normality""; ""6.3. Contiguity""; ""6.4. Interference of strips and column moves""; ""6.5. Column-type pushout: non-interfering case""; ""6.6. Column-type pushout: interfering case""; ""6.7. Alternative description of pushouts (column moves)""; ""Chapter 7. Pushout sequences""; ""7.1. Canonical pushout sequence""; ""7.2. Pushout sequences from (,) are equivalent""
|
505 |
8 |
|
|a ""Chapter 8. Pushouts of equivalent paths are equivalent""""8.1. Pushout of equivalences""; ""8.2. Commuting cube (non-degenerate case)""; ""8.3. Commuting cube (degenerate case =â??)""; ""8.4. Commuting cube (degenerate case =â??)""; ""8.5. Commuting cube (degenerate case =â??)""; ""Chapter 9. Pullbacks""; ""9.1. Equivalences in the reverse case""; ""9.2. Reverse operations on strips""; ""9.3. Pullback of strips and moves""; ""9.4. Pullbacks sequences are all equivalent""; ""9.5. Pullbacks of equivalent paths are equivalent""; ""9.6. Pullbacks are inverse to pushouts""
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Partially ordered sets.
|
650 |
|
0 |
|a Schur functions.
|
650 |
|
6 |
|a Ensembles partiellement ordonnés.
|
650 |
|
6 |
|a Fonctions de Schur.
|
650 |
|
7 |
|a MATHEMATICS
|x Geometry
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Partially ordered sets
|2 fast
|
650 |
|
7 |
|a Schur functions
|2 fast
|
700 |
1 |
|
|a Lapointe, Luc,
|d 1970-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjx66kjHRQb77by6xRY3wC
|
700 |
1 |
|
|a Morse, Jennifer,
|d 1971-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjHkYkhwFJFR7GJ6hXMmq3
|
700 |
1 |
|
|a Shimozono, Mark,
|e author.
|
758 |
|
|
|i has work:
|a The poset of k-shapes and branching rules for k-Schur functions (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFMFGDTKmWXT7YQfFRBjJC
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Lam, Thomas, 1980-
|t Poset of K-shapes and branching rules for K-Schur functions
|z 9780821872949
|w (DLC) 2012051373
|w (OCoLC)827082873
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1050.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114577
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3114577
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr11041355
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 843540
|
994 |
|
|
|a 92
|b IZTAP
|