|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_ocn833767117 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr un||||||||| |
008 |
130330s2013 nyu o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d YDXCP
|d IDEBK
|d OCLCQ
|d SFB
|d OCLCO
|d OCLCF
|d OCLCO
|d OCLCQ
|d OCLCO
|d CNSPO
|d DEBSZ
|d OCLCO
|d OCLCQ
|d OCLCO
|d CSAIL
|d OCLCO
|d OCLCQ
|d Z5A
|d OCLCO
|d VGM
|d OCLCO
|d MERUC
|d OCLCO
|d OCLCQ
|d ZCU
|d OCLCO
|d U3W
|d OCLCA
|d ICG
|d INT
|d OCLCQ
|d DKC
|d OCLCO
|d AU@
|d OCLCO
|d OCLCQ
|d UKAHL
|d OCLCO
|d OCLCQ
|d OCLCA
|d OCLCQ
|d OCLCA
|d OCLCO
|d OCLCQ
|d OCL
|d OCLCO
|d OCLCL
|
066 |
|
|
|c (S
|
019 |
|
|
|a 872694642
|a 988791171
|
020 |
|
|
|a 9781118375105
|
020 |
|
|
|a 1118375106
|
029 |
1 |
|
|a DEBBG
|b BV044174206
|
029 |
1 |
|
|a DEBSZ
|b 43136978X
|
029 |
1 |
|
|a NZ1
|b 16177001
|
035 |
|
|
|a (OCoLC)833767117
|z (OCoLC)872694642
|z (OCoLC)988791171
|
050 |
|
4 |
|a QP551
|
060 |
|
4 |
|a QU 55.4
|
082 |
0 |
4 |
|a 577.7
|a 615.19
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Kim, Se-Kwon.
|
245 |
1 |
0 |
|a Marine Proteins and Peptides :
|b Biological Activities and Applications.
|
260 |
|
|
|a New York :
|b Wiley,
|c 2013.
|
300 |
|
|
|a 1 online resource (818 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
|
|6 880-01
|a Cover; Title Page; Copyright; Contents; List of Contributors; Chapter 1 Marine-derived Peptides: Development and Health Prospects; 1.1 Introduction; 1.2 Development of Marine Peptides; 1.3 Health Benefits of Marine Peptides; 1.4 Conclusion; References; Chapter 2 Bioactive Proteins and Peptides from Macroalgae, Fish, Shellfish and Marine Processing Waste; 2.1 Introduction; 2.2 Macroalgal, Fish and Shellfish Proteins: Potential Sources of Bioactive Hydrolysates and Peptides; 2.2.1 Macroalgal Proteins; 2.2.2 Fish and Shellfish Proteins.
|
505 |
8 |
|
|a 2.3 Enzymatic Hydrolysis of Macroalgal, Fish and Shellfish Processing Waste Proteins: Bioactive Protein Hydrolysates and Peptides2.3.1 In Vitro and In Vivo Cardioprotective Activity; 2.3.2 Oxidative Stress; 2.3.3 Other Biofunctionalities; 2.4 Endogenous Bioactive Peptides from Macroalgae, Fish and Shellfish; 2.5 Bioactive Proteins from Macroalgae, Fish and Shellfish; 2.6 Commercial Products Containing Marine-Derived Bioactive Protein Hydrolysates and Peptides; 2.7 Conclusion; Acknowledgement; References; Chapter 3 Lectins with Varying Specificity and Biological Activity from Marine Bivalves.
|
505 |
8 |
|
|a 3.1 Introduction3.1.1 Bivalves; 3.1.1.1 Mussels; 3.1.1.2 Oysters; 3.1.1.3 Clams; 3.1.1.4 Scallops; 3.1.1.5 Cockles; 3.1.2 Innate Immunity of Invertebrates; 3.1.3 Importance of Bivalve Mollusks; 3.2 Lectins; 3.2.1 Bivalve Lectins; 3.2.1.1 C-type Lectins; 3.2.1.2 Galectins; 3.3 Isolation, Molecular Characterization and Carbohydrate Specificity of Bivalve Lectins; 3.4 Biological Functions of Bivalve Lectins; Acknowledgements; References; Chapter 4 Digestive Enzymes from Marine Sources; 4.1 Introduction; 4.2 Biodiversity and Availability; 4.3 Marine Biocatalysts; 4.3.1 Salt and pH Tolerance.
|
505 |
8 |
|
|a 4.3.2 Barophilicity4.3.3 Cold Adaptivity; 4.4 Digestive Enzymes; 4.4.1 Digestive Proteases; 4.4.1.1 Acid/Aspartyl Proteases; 4.4.1.2 Serine Proteases; 4.4.1.3 Cysteine or Thiol Proteases; 4.4.1.4 Metalloproteinases; 4.5 Lipases; 4.5.1 Phospholipases; 4.5.2 Chitinolytic Enzymes; 4.5.3 Transglutaminase; 4.6 Industrial Applications; References; Chapter 5 Kamaboko Proteins as a Potential Source of Bioactive Substances; 5.1 Introduction; 5.2 Creation of Healthier and Safer Foods; 5.3 Enzymatic Modification of Food Proteins; 5.4 Kamaboko; 5.5 Chemical Properties of Kamaboko.
|
505 |
8 |
|
|a 5.6 Expression of Health the Function of Kamaboko Proteins5.7 Antioxidative Activities of Kamaboko Proteins; 5.8 Angiotensin I-Converting Enzyme-Inhibitory Activities of Kamaboko Proteins; 5.9 Conclusion; References; Chapter 6 Biological Activities of Fish-protein Hydrolysates; 6.1 Introduction; 6.2 Angiotensin I-Converting Enzyme Inhibitors; 6.3 Antioxidative Properties; 6.4 Anticancer Activity; 6.5 Antimicrobial and Antiviral Activity; 6.6 Calcium-Binding Peptides; 6.7 Appetite Suppression; 6.8 Anticoagulant Activity; 6.9 Immunostimulant Activity; 6.10 Hypocholesterolemic Activity.
|
500 |
|
|
|a 6.11 Hormone-Regulating Properties.
|
520 |
|
|
|a Food proteins and bioactive peptides play a vital role in the growth and development of the body's structural integrity and regulation, as well as having a variety of other functional properties. Land animal-derived food proteins such as collagen and gelatine carry risks of contamination (such as BSE). Marine-derived proteins, which can provide equivalents to collagen and gelatin without the associated risks, are becoming more popular among consumers because of their numerous health beneficial effects. Most marine-derived bioactive peptides are currently underutilized. While fish and shellf.
|
588 |
0 |
|
|a Print version record.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Proteins
|x Biotechnology.
|
650 |
|
0 |
|a Marine pharmacology.
|
650 |
|
0 |
|a Food industry and trade.
|
650 |
|
0 |
|a Seafood.
|
650 |
1 |
2 |
|a Dietary Proteins
|x pharmacology
|
650 |
2 |
2 |
|a Aquatic Organisms
|
650 |
2 |
2 |
|a Drug Discovery
|
650 |
2 |
2 |
|a Food Industry
|
650 |
2 |
2 |
|a Peptide Hydrolases
|x pharmacology
|
650 |
2 |
2 |
|a Seafood
|
650 |
|
4 |
|a Food
|x Protein content.
|
650 |
|
4 |
|a Peptides.
|
650 |
|
4 |
|a Proteins.
|
650 |
|
6 |
|a Protéines
|x Biotechnologie.
|
650 |
|
6 |
|a Pharmacologie marine.
|
650 |
|
6 |
|a Aliments
|x Industrie et commerce.
|
650 |
|
6 |
|a Fruits de mer.
|
650 |
|
7 |
|a Seafood
|2 fast
|
650 |
|
7 |
|a Food industry and trade
|2 fast
|
650 |
|
7 |
|a Marine pharmacology
|2 fast
|
650 |
|
7 |
|a Proteins
|x Biotechnology
|2 fast
|
758 |
|
|
|i has work:
|a Marine proteins and peptides (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGp8JxCwmw9bk3Y6rVygqP
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Kim, Se-Kwon.
|t Marine Proteins and Peptides : Biological Activities and Applications.
|d New York : Wiley, ©2013
|z 9781118375068
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1157714
|z Texto completo
|
880 |
0 |
0 |
|6 505-01/(S
|g Contents note continued:
|g 12.3.2.
|t Anti-Proliferative Proteins and Peptides --
|g 12.3.3.
|t Anti-Hypertensive Proteins and Peptides --
|g 12.4.
|t Marine-algal Proteins: Potential Sources for Future Applications --
|g 12.4.1.
|t Nutraceutical Value --
|g 12.4.2.
|t Pharmaceutical Value --
|g 12.4.3.
|t Cosmetic Value --
|g 12.5.
|t Conclusion --
|t References --
|g 13.
|t Fish Gelatin: A Versatile Ingredient for the Food and Pharmaceutical Industries /
|r Venkateshwarlu Gudipati --
|g 13.1.
|t Introduction --
|g 13.2.
|t Structural Features of Fish Gelatin --
|g 13.3.
|t Improvement of Functional Properties --
|g 13.4.
|t Applications in the Food Industry --
|g 13.4.1.
|t Gelatin Gels --
|g 13.4.2.
|t Food Emulsions --
|g 13.4.2.1.
|t Oxidatively-Stable Emulsions --
|g 13.4.3.
|t Nutritional Supplements --
|g 13.4.4.
|t Biodegradable Edible Films for Food Packaging --
|g 13.4.4.1.
|t Biocomposite and Nanocomposite Films --
|g 13.4.4.2.
|t Active Films for Food Preservation --
|g 13.5.
|t Applications in the Pharmaceutical Industry --
|g 13.5.1.
|t Fish Gelatin-based Hard and Soft Capsules --
|g 13.5.2.
|t Anti-Oxidative Fish-gelatin Hydrolysates --
|g 13.5.3.
|t Collagen Peptides --
|g 13.5.3.1.
|t Fish-scale Collagen Peptides --
|g 13.5.4.
|t Carriers in Controlled Drug Delivery --
|g 13.6.
|t Conclusion --
|t References --
|g 14.
|t Health Effects of Anti-Oxidative and Anti-Hypertensive Peptides from Marine Resources /
|r Rune Larsen --
|g 14.1.
|t Introduction --
|g 14.1.1.
|t Origin of Peptides --
|g 14.2.
|t Anti-Oxidative Peptides --
|g 14.2.1.
|t Anti-Oxidants and Health Effects --
|g 14.2.1.1.
|t Cardiovascular Diseases --
|g 14.2.1.2.
|t Diabetes Mellitus --
|g 14.2.1.3.
|t Neurodegenerative Disorders --
|g 14.2.1.4.
|t Cancer --
|g 14.2.2.
|t Anti-Oxidant Function --
|g 14.2.2.1.
|t Anti-Oxidative Effects of Proteins, Peptides and Amino Acids --
|g 14.2.3.
|t Evaluation of Anti-Oxidative Capacity --
|g 14.2.3.1.
|t In Vitro Chemical Studies --
|g 14.2.3.2.
|t In Vitro Biological Studies --
|g 14.2.3.3.
|t Animal Studies --
|g 14.2.3.4.
|t Human Clinical Trials --
|g 14.3.
|t Anti-Hypertensive Peptides --
|g 14.3.1.
|t Anti-Hypertensive Peptides and Health --
|g 14.3.2.
|t Function of ACE Inhibitors --
|g 14.3.3.
|t Evaluation of ACE-inhibitory Effect --
|g 14.3.3.1.
|t In Vitro Studies --
|g 14.3.3.2.
|t Animal Studies --
|g 14.3.3.3.
|t Human Clinical Trials --
|g 14.3.4.
|t Comparison of the ACE-inhibitory Capacities of Non-Marine Peptides and Commercial Products --
|g 14.4.
|t Conclusion --
|t References --
|g 15.
|t Potential Novel Therapeutics: Some Biological Aspects of Marine-derived Bioactive Peptides /
|r Suranga P. Kodithuwakku --
|g 15.1.
|t Introduction --
|g 15.2.
|t Marine-derived Proteins and Biopeptides with Anti-Hypertensive Activity --
|g 15.2.1.
|t 'Katsuobushi' Peptides --
|g 15.2.2.
|t Sardine Peptides --
|g 15.2.3.
|t Salmon Peptides --
|g 15.2.4.
|t Mackeral Peptides --
|g 15.2.5.
|t Shrimp Peptides --
|g 15.2.6.
|t Alaska Pollock Peptides --
|g 15.2.7.
|t Yellow-Fin Sole Peptides --
|g 15.2.8.
|t Oyster Peptides --
|g 15.2.9.
|t Tuna Peptides --
|g 15.2.10.
|t Shark Peptides --
|g 15.2.11.
|t Algae Peptides --
|g 15.2.12.
|t Other Marine Peptides with Potent Anti-ace Properties --
|g 15.3.
|t Anti-Cancer Effects of Marine-derived Bioactive Peptides --
|g 15.3.1.
|t Didemin B and Aplidine --
|g 15.3.2.
|t ωμλμϟμτζλ ΚΣΖΖΑ
|g 15.3.3.
|t Hemiasterlin/HTI-286 --
|g 15.3.4.
|t Dolastatins --
|g 15.3.5.
|t Kahalalide F --
|g 15.3.6.
|t Cryptophycins --
|g 15.3.7.
|t Neovastat/AE-941 --
|g 15.3.8.
|t Vitilevuamide --
|g 15.3.9.
|t Thiocoraline --
|g 15.3.10.
|t Jasplakinolide --
|g 15.3.11.
|t Conclusion --
|g 15.4.
|t Anti-Viral Bioactivities of Marine-derived Bioactive Peptides --
|g 15.4.1.
|t Papuamides --
|g 15.4.2.
|t Callipeltin A --
|g 15.4.3.
|t Neamphamide A --
|g 15.4.4.
|t Mirabamides --
|g 15.4.5.
|t Cyanovirin-N --
|g 15.4.6.
|t Microspinosamide --
|g 15.4.7.
|t Griffithsin --
|g 15.4.8.
|t Conclusion --
|g 15.5.
|t The Future of Marine Peptides as Therapeutics --
|t References --
|g 16.
|t Hormone-like Peptides Obtained by Marine-protein Hydrolysis and Their Bioactivities /
|r Oscar Martinez-Alvarez --
|g 16.1.
|t Introduction --
|g 16.2.
|t Growth Hormone-Release Peptides --
|g 16.3.
|t Opioid-Like Peptides --
|g 16.4.
|t Immunomodulating Peptides --
|g 16.5.
|t Glucose Uptake-Stimulating Peptides --
|g 16.6.
|t Secretagogue and Calciotropic Activities --
|g 16.7.
|t Limitations on the use of Hormone-like Peptides as Nutraceuticals --
|g 16.8.
|t Further Development and Research Needs --
|t References --
|g 17.
|t Anti-Microbial Activities of Marine Protein and Peptides /
|r Shiyuan Dong --
|g 17.1.
|t Introduction --
|g 17.2.
|t Preparation, Purification and Characterization --
|g 17.2.1.
|t Preparation and Purification --
|g 17.2.2.
|t Characterization --
|g 17.3.
|t In Vitro Anti-Microbial Studies --
|g 17.3.1.
|t Anti-Microbial Activity --
|g 17.3.2.
|t The Effects of AMPs on Bacterial Cells --
|g 17.4.
|t Anti-Microbial Mechanisms --
|g 17.4.1.
|t Membrane-disruptive Mechanism --
|g 17.4.1.1.
|t 'Barrel-stave' Model --
|g 17.4.1.2.
|t 'Micellar-aggregate' Model --
|g 17.4.1.3.
|t 'Carpet' Model --
|g 17.4.2.
|t Non-membrane-disruptive Mechanism --
|g 17.5.
|t Applications and Prospects in Food Preservation --
|g 17.6.
|t Conclusion --
|t References --
|g 18.
|t Production and Anti-Oxidant Properties of Marine-derived Bioactive Peptides /
|r Qiukuan Wang --
|g 18.1.
|t Introduction --
|g 18.2.
|t Production of Antioxidant Peptides --
|g 18.2.1.
|t Microbial Fermentation --
|g 18.2.2.
|t Enzymatic Hydrolysis --
|g 18.2.2.1.
|t Enzymatic Hydrolysis by Commercial Enzymes --
|g 18.2.2.2.
|t Enzymatic Hydrolysis by Autolysis or Self-prepared Enzymes --
|g 18.2.3.
|t Purification and Identification of Anti-Oxidant Peptides --
|g 18.3.
|t Anti-Oxidant Mechanism and Structure-activity Relationship --
|g 18.3.1.
|t Anti-Oxidant Mechanism of Bioactive Peptides --
|g 18.3.2.
|t Structure-activity Relationship of Anti-Oxidant Peptides --
|g 18.3.2.1.
|t Molecular Weights of Peptides --
|g 18.3.2.2.
|t Hydrophobicity --
|g 18.3.2.3.
|t Amino Acid Composition and Sequence --
|g 18.3.2.4.
|t Histidine-containing Peptides --
|g 18.3.2.5.
|t Peptide Conformation and Amino Acid Configuration --
|g 18.4.
|t Industrial Applications and Perspectives --
|t References --
|g 19.
|t Marine Peptides and Proteins with Cytotoxic and Anti-Tumoural Properties /
|r Fernando Albericio --
|g 19.1.
|t Introduction --
|g 19.2.
|t Current Pipeline of Oncological Drugs Based on Natural Products --
|g 19.3.
|t Current Pipeline of Marine Peptides with Anti-Tumoural Activity --
|g 19.4.
|t Major Biological Sources of Marine Cytotoxic Peptides and Proteins --
|g 19.5.
|t Structural Motifs in Cytotoxic Peptides --
|g 19.6.
|t Cytotoxic Acyclic Peptides --
|g 19.7.
|t Cytotoxic Cyclic Peptides --
|g 19.8.
|t Cytotoxic (Poly)Peptides Obtained by Enzymatic Hydrolysis of Seafood --
|g 19.9.
|t Cytotoxic Polypeptides --
|g 19.10.
|t Conclusion --
|g 19.11.
|t Acknowledgments --
|t References --
|g 20.
|t ACE-inhibitory Activities of Marine Proteins and Peptides /
|r Shiyuan Dong --
|g 20.1.
|t Introduction --
|g 20.2.
|t Determination of ACE-inhibitory Peptide Activity --
|g 20.2.1.
|t In Vitro ACE-Inhibition Assay --
|g 20.2.2.
|t Anti-Hypertensive-Activity Assay In Vivo --
|g 20.3.
|t ACE-inhibitory Peptides from Marine Sources --
|g 20.3.1.
|t ACE-Inhibitory Peptides from Fish Sources --
|g 20.3.2.
|t ACE-Inhibitory Peptides from Sea Cucumber --
|g 20.4.
|t Types of ACE-Inhibitor Peptide --
|g 20.5.
|t Structure-Activity Relationships of ACE-Inhibitory Peptides --
|g 20.6.
|t Conclusion --
|t References --
|g 21.
|t Isolation and Biological Activities of Peptides from Marine Microalgae by Fermentation /
|r Se-Kwon Kim --
|g 21.1.
|t Introduction --
|g 21.2.
|t Utilization of Fermentation to Hydrolyze Protein --
|g 21.3.
|t Microalgae As a Source of Protein --
|g 21.4.
|t Metabolites of Proteolytic Hydrolysis by Fermentation --
|g 21.5.
|t Hydrolyzed Microalgal Peptide Application --
|g 21.6.
|t Conclusion --
|t References --
|g 22.
|t Anti-Oxidant Activities of Marine Peptides from Fish and Shrimp /
|r Zunying Liu --
|g 22.1.
|t Introduction --
|g 22.2.
|t Production, Isolation, and Purification of Anti-Oxidant Peptides --
|g 22.3.
|t Methods Used to Measure Anti-Oxidant Activity --
|g 22.3.1.
|t In Vitro Chemical Assays --
|g 22.3.2.
|t In Vitro Biological Assays and In Vivo Assays --
|g 22.4.
|t Anti-Oxidant Activity of Peptides --
|g 22.4.1.
|t Anti-Oxidant Peptides from Fish Sources --
|g 22.4.2.
|t Anti-Oxidant Peptide from Shrimp Sources --
|g 22.5.
|t Anti-Oxidant Mechanisms of Peptides --
|g 22.6.
|t Applications and Prospects --
|t References --
|g 23.
|t Fish-elastin Hydrolysate: Development and Impact on the Skin and Blood Vessels /
|r Kenji Sato --
|g 23.1.
|t Introduction --
|g 23.2.
|t Starter Materials for Fish-elastin Hydrolysate --
|g 23.3.
|t Preparation of Skipjack-elastin Hydrolysate --
|g 23.4.
|t Impact of Ingestion of Skipjack-elastin Hydrolysate on Skin Conditions --
|g 23.5.
|t Impact of Skipjack-elastin
|
880 |
0 |
0 |
|t Hydrolysate on Blood Vessels --
|g 23.6.
|t Safety of Skipjack-elastin Hydrolysate --
|g 23.7.
|t Identification of Food-derived Elastin Peptide in Human Blood --
|g 23.8.
|t Effect of Food-derived Elastin-peptide Pro-gly on Cells --
|g 23.9.
|t Conclusion --
|t References --
|g 24.
|t Free Radical-scavenging Activity of Marine Proteins and Peptides /
|r Dai-Nghiep Ngo --
|g 24.1.
|t Introduction --
|g 24.2.
|t Formation of Free Radicals and Methods of Assaying Anti-Oxidant Activity --
|g 24.2.1.
|t Formation of Free Radicals --
|g 24.2.2.
|t Methods of Assaying Anti-Oxidant Activity --
|g 24.2.2.1.
|t Anti-Oxidant Activities Using Chemical Tests --
|g 24.2.2.2.
|t Anti-Oxidant Activities Using ESR Assay --
|g 24.3.
|t Free Radical-scavenging Activity of Marine Proteins and Peptides --
|g 24.4.
|t Conclusion --
|t References --
|g 25.
|t Marine-derived Bioactive Peptides: Their Cardioprotective Activities and Potential Applications /
|r M.T. Rosna --
|g 25.1.
|t Introduction --
|g 25.2.
|t Cardiovascular Diseases and Nutraceuticals --
|g 25.3.
|t Sources of Marine Peptides --
|g 25.4.
|t Development of Marine Bioactive Peptides --
|g 25.5.
|t Oxidative Stress --
|g 25.6.
|t Anti-Hypertensive Activity --
|g 25.7.
|t Anti-Coagulant Activity --
|g 25.8.
|t Conclusion --
|t References --
|g 26.
|t Biological Activities of Marine Bioactive Peptides /
|r Se-Kwon Kim --
|g 26.1.
|t Introduction.
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH25036236
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH25036235
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL1157714
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis25154321
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 9984483
|
994 |
|
|
|a 92
|b IZTAP
|