Cargando…

Sound waves : propagation, frequencies, and effects /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Abagnali, Vitale, Fabbri, Giampaolo
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Nova Science Publishers, ©2012.
Colección:Acoustics research and technology
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • SOUND WAVES PROPAGATION, FREQUENCIES AND EFFECTS
  • SOUND WAVES PROPAGATION, FREQUENCIES AND EFFECTS
  • CONTENTS
  • PREFACE
  • TIME RESOLVED VISUALIZATION AND ANALYSIS ON A SINGLE SHORT ACOUSTIC WAVE GENERATION, PROPAGATION AND INTERACTION
  • Abstract
  • 1. INTRODUCTION
  • 2. EXPERIMENT AND NUMERICAL SIMULATIONS
  • A. Time Resolved Acoustic Wave Imaging: Laser flash Schlieren photography
  • B. Numerical simulations
  • 3. RESULTS AND DISCUSSIONS
  • 3.1. Laser Induced Thermoelastic Acoustic Wave Generation in Water
  • 3.2. Laser Induced Acoustic Waves in Various External Channels
  • A. Single Block
  • B. Double Block (A Channel)
  • D. 33º Tilted Single Block
  • E. Concave Cylindrical Lens (Acoustic Wave Focusing)
  • F. Viscosity Effect (Propagation Velocity and Attenuation)
  • 3.3. Laser Induced Acoustic waves in Various Internal Channels
  • A. Sudden Expansion and Contraction Channels
  • B. Bifurcating Channels: T Branched and Y Branched Channels
  • C. Gradual Contraction Wall Channels: Linear Contraction and Parabolic Contraction Wall Channel
  • D. Trapped Acoustic Wave in a Cylinder
  • CONCLUSION
  • ACKNOWLEDGMENT
  • REFERENCES
  • ELASTIC VIBRATIONS OF AN ISOTROPIC PLATE WITH LASER-INDUCED ATOMIC DEFECTS
  • Abstract
  • 1. INTRODUCTION
  • 2. BASIC EQUATIONS
  • 3. FORMULATION OF THE PROBLEM
  • 4. BASIC SOLUTIONS
  • 5. DISPERSION EQUATIONS IF THE WAVE IN AN INFINITIVE MEDIUM
  • 6. DISPERSION EQUATION OF THE PLANE WAVE IN PLATES
  • 7. LIMITING FORMS OF THE FREQUENCY EQUATIONS
  • CONCLUSION
  • REFERENCES
  • ELECTROACOUSTIC MONITORING OF COLLOIDAL STATE CHANGES IN SODIUM CASEINATE STABILIZED OIL IN WATER EMULSIONS
  • Abstract
  • 1. INTRODUCTION
  • 1.1. Fundamentals of electroacoustics
  • 1.2. Sodium Caseinate Stabilized Emulsions and Challenges in Formulation
  • 2. MATERIALS AND METHODS
  • 2.1. Emulsion Preparation.
  • 2.2. Determination of Size Distribution Using Light Scattering
  • 2.3. Acoustic and Electroacoustic Spectrometer
  • 3. RESULTS AND DISCUSSION
  • 3.1. Electroacoustic Properties of Sodium Caseinate Emulsions as a Function of Concentration
  • 3.2. Destabilization of emulsion droplets: acidification
  • 3.3. Interactions between the Oil Droplets and a Charged Polymer: High Methoxyl Pectin (HMP)
  • 3.4. Destabilization of the oil droplets due to depletion flocculation
  • CONCLUSION
  • REFERENCES
  • NUMERICAL ASSESSMENT OF MULTI-CHAMBER MUFFLERS HYBRIDIZED WITH MULTIPLE PERFORATED INTRUDING TUBES USING GA METHOD
  • Abstract
  • 1. NOMENCLATURE
  • 2. INTRODUCTION
  • 3. THEORETICAL BACKGROUND
  • 3.1. Four-pole Transfer Matrices
  • 3.2. Overall Sound Power Level
  • 3.3. Objective Function
  • (A) STL maximization for a tone (f) noise
  • (B) SWL minimization for a broadband noise
  • 4. MODEL CHECK
  • 5. CASE STUDIES
  • 6. GENETIC ALGORITHM
  • 7. RESULTS AND DISCUSSION
  • 7.1. Results
  • 7.1.1. Pure Tone Noise Optimization
  • 7.1.2. Broadband Noise Optimization
  • 7.2. Discussion
  • CONCLUSION
  • ACKNOWLEDGMENTS
  • APPENDIX A
  • Transfer Matrix of an Expanded Perforated Intruding Tube
  • APPENDIX B
  • Transfer Matrix of a Contracted Perforated Intruding Tube
  • REFERENCE
  • THE SOUND VELOCITY INTO TURBULENT FLOW
  • Abstract
  • INTRODUCTION
  • CONSERVATION EQUATIONS FOR TURBULENT FLOW
  • THE SOUND VELOCITY INTO TURBULENT FLOW
  • CONCLUSION
  • REFERENCES
  • INFRASOUND GENERATION BY TURBULENT CONVECTION
  • Abstract
  • 1. Introduction
  • 2. GeneralCharacteristicsofAtmosphericInfrasound
  • 3. HistoryofInfrasoundStudies
  • 4. InstrumentationandProcessingTechniques
  • 5. InfrasoundfromStrongConvectiveStorms
  • 6. Lighthill'sAcousticAnalogy
  • 6.1. MathematicalFormulation
  • 6.2. Lighthill'sQuadrupoleSource
  • 7. InfrasoundGenerationbyTornadicStorms
  • 7.1. Generalformalism.
  • 7.2. AnalysisofDifferentSources
  • 7.3. Applicationtoinfrasoundgenerationbytornadicconvectivestorms
  • 7.4. Spectrumofinfrasound
  • 7.5. Infrasoundcorrelationwithtornadoes
  • 8. Conclusion
  • References
  • ON THE NEUTRONS DIFFRACTION IN A CRYSTAL UNDER THE INFLUENCE OF A SOUND WAVE
  • Abstract
  • 1. Introduction
  • 2. Neutron-CrystalInteractionPotentialUndertheInfluenceofaSoundWave
  • 3.S-MatrixTheory
  • 4. DiffractionProbability
  • 5. AnalysisoftheResults:DiffractionConditionandtheDebye-WallerFactor
  • 5.1. Diffractioncondition
  • 5.1.1. Influenceofatravelingsoundwave
  • 5.1.2. Influenceofastandingsoundwave
  • 5.2. TheDebye-Wallerfactor
  • Acknowledgments
  • References
  • ON THE TRANSFORMATION OF SOUND WAVES IN NON-STATIONARY MEDIA
  • Abstract
  • 1. Introduction
  • 2. BasicEquations
  • 2.1. Basicequationsoffluiddynamics
  • 2.2. Soundwaves
  • 3. TransformationofSoundWavesinNon-StationaryMediawithAbruptlyChangingParameters
  • 4. TransformationofSoundWavesinNon-StationaryMediawithSmoothlyChangingParameters
  • 5. Conclusion
  • Acknowledgments
  • References
  • TOMOGRAPHY TECHNIQUE TO SYNOPTIC MAPPING OF OCEAN MESO-SCALE FIELD
  • ABSTRACT
  • INTRODUCTION
  • 1. MATHEMATICAL FORMULATION AND MODELING
  • 1.1. Ocean Model
  • Oceanic Variability and its Effect on Acoustics
  • 1.1a. Synoptic (Meso-Scale) Eddies
  • 1.1b. Large Scale Currents and Frontal Zones
  • 1.2a. Internal Waves
  • 1.2b. Vertical Fine Structure
  • 1.2c. Small Scale Turbulence
  • 1.3. Forward Problem
  • 1.4. Stochastic Inverse
  • 2. DATA AND SIMULATION
  • 3. RESULTS AND DISCUSSION
  • 3.1. Sound Velocity Field
  • 3.2. EOF Modes
  • 3.3. Data Resolution Matrix)(TppUU
  • 3.4. Model Resolution Matrix)(TppVV
  • 3.5. Eigen Rays
  • 3.6. Ray Arrival Pattern
  • 3.7. Acoustic Intensity
  • 3.8. Inversion
  • Building the Estimates.
  • 4. OBJECTIVE MAPPING OF TEMPERATURE FIELD BY STOCHASTIC INVERSE METHOD USING ACOUSTIC TOMOGRAPHY EXPERIMENTAL DATA OF EASTERN ARABIAN SEA
  • ACKNOWLEDGMENTS
  • APPENDIX A
  • A1. Elements of Ocean Acoustics
  • A1.1. Wave Equation
  • A1.2. Ray Theory
  • APPENDIX-B
  • B1. Computational Procedures:
  • B2. Closeness Ratio
  • REFERENCES
  • INDEX.