Sound waves : propagation, frequencies, and effects /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
New York :
Nova Science Publishers,
©2012.
|
Colección: | Acoustics research and technology
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- SOUND WAVES PROPAGATION, FREQUENCIES AND EFFECTS
- SOUND WAVES PROPAGATION, FREQUENCIES AND EFFECTS
- CONTENTS
- PREFACE
- TIME RESOLVED VISUALIZATION AND ANALYSIS ON A SINGLE SHORT ACOUSTIC WAVE GENERATION, PROPAGATION AND INTERACTION
- Abstract
- 1. INTRODUCTION
- 2. EXPERIMENT AND NUMERICAL SIMULATIONS
- A. Time Resolved Acoustic Wave Imaging: Laser flash Schlieren photography
- B. Numerical simulations
- 3. RESULTS AND DISCUSSIONS
- 3.1. Laser Induced Thermoelastic Acoustic Wave Generation in Water
- 3.2. Laser Induced Acoustic Waves in Various External Channels
- A. Single Block
- B. Double Block (A Channel)
- D. 33º Tilted Single Block
- E. Concave Cylindrical Lens (Acoustic Wave Focusing)
- F. Viscosity Effect (Propagation Velocity and Attenuation)
- 3.3. Laser Induced Acoustic waves in Various Internal Channels
- A. Sudden Expansion and Contraction Channels
- B. Bifurcating Channels: T Branched and Y Branched Channels
- C. Gradual Contraction Wall Channels: Linear Contraction and Parabolic Contraction Wall Channel
- D. Trapped Acoustic Wave in a Cylinder
- CONCLUSION
- ACKNOWLEDGMENT
- REFERENCES
- ELASTIC VIBRATIONS OF AN ISOTROPIC PLATE WITH LASER-INDUCED ATOMIC DEFECTS
- Abstract
- 1. INTRODUCTION
- 2. BASIC EQUATIONS
- 3. FORMULATION OF THE PROBLEM
- 4. BASIC SOLUTIONS
- 5. DISPERSION EQUATIONS IF THE WAVE IN AN INFINITIVE MEDIUM
- 6. DISPERSION EQUATION OF THE PLANE WAVE IN PLATES
- 7. LIMITING FORMS OF THE FREQUENCY EQUATIONS
- CONCLUSION
- REFERENCES
- ELECTROACOUSTIC MONITORING OF COLLOIDAL STATE CHANGES IN SODIUM CASEINATE STABILIZED OIL IN WATER EMULSIONS
- Abstract
- 1. INTRODUCTION
- 1.1. Fundamentals of electroacoustics
- 1.2. Sodium Caseinate Stabilized Emulsions and Challenges in Formulation
- 2. MATERIALS AND METHODS
- 2.1. Emulsion Preparation.
- 2.2. Determination of Size Distribution Using Light Scattering
- 2.3. Acoustic and Electroacoustic Spectrometer
- 3. RESULTS AND DISCUSSION
- 3.1. Electroacoustic Properties of Sodium Caseinate Emulsions as a Function of Concentration
- 3.2. Destabilization of emulsion droplets: acidification
- 3.3. Interactions between the Oil Droplets and a Charged Polymer: High Methoxyl Pectin (HMP)
- 3.4. Destabilization of the oil droplets due to depletion flocculation
- CONCLUSION
- REFERENCES
- NUMERICAL ASSESSMENT OF MULTI-CHAMBER MUFFLERS HYBRIDIZED WITH MULTIPLE PERFORATED INTRUDING TUBES USING GA METHOD
- Abstract
- 1. NOMENCLATURE
- 2. INTRODUCTION
- 3. THEORETICAL BACKGROUND
- 3.1. Four-pole Transfer Matrices
- 3.2. Overall Sound Power Level
- 3.3. Objective Function
- (A) STL maximization for a tone (f) noise
- (B) SWL minimization for a broadband noise
- 4. MODEL CHECK
- 5. CASE STUDIES
- 6. GENETIC ALGORITHM
- 7. RESULTS AND DISCUSSION
- 7.1. Results
- 7.1.1. Pure Tone Noise Optimization
- 7.1.2. Broadband Noise Optimization
- 7.2. Discussion
- CONCLUSION
- ACKNOWLEDGMENTS
- APPENDIX A
- Transfer Matrix of an Expanded Perforated Intruding Tube
- APPENDIX B
- Transfer Matrix of a Contracted Perforated Intruding Tube
- REFERENCE
- THE SOUND VELOCITY INTO TURBULENT FLOW
- Abstract
- INTRODUCTION
- CONSERVATION EQUATIONS FOR TURBULENT FLOW
- THE SOUND VELOCITY INTO TURBULENT FLOW
- CONCLUSION
- REFERENCES
- INFRASOUND GENERATION BY TURBULENT CONVECTION
- Abstract
- 1. Introduction
- 2. GeneralCharacteristicsofAtmosphericInfrasound
- 3. HistoryofInfrasoundStudies
- 4. InstrumentationandProcessingTechniques
- 5. InfrasoundfromStrongConvectiveStorms
- 6. Lighthill'sAcousticAnalogy
- 6.1. MathematicalFormulation
- 6.2. Lighthill'sQuadrupoleSource
- 7. InfrasoundGenerationbyTornadicStorms
- 7.1. Generalformalism.
- 7.2. AnalysisofDifferentSources
- 7.3. Applicationtoinfrasoundgenerationbytornadicconvectivestorms
- 7.4. Spectrumofinfrasound
- 7.5. Infrasoundcorrelationwithtornadoes
- 8. Conclusion
- References
- ON THE NEUTRONS DIFFRACTION IN A CRYSTAL UNDER THE INFLUENCE OF A SOUND WAVE
- Abstract
- 1. Introduction
- 2. Neutron-CrystalInteractionPotentialUndertheInfluenceofaSoundWave
- 3.S-MatrixTheory
- 4. DiffractionProbability
- 5. AnalysisoftheResults:DiffractionConditionandtheDebye-WallerFactor
- 5.1. Diffractioncondition
- 5.1.1. Influenceofatravelingsoundwave
- 5.1.2. Influenceofastandingsoundwave
- 5.2. TheDebye-Wallerfactor
- Acknowledgments
- References
- ON THE TRANSFORMATION OF SOUND WAVES IN NON-STATIONARY MEDIA
- Abstract
- 1. Introduction
- 2. BasicEquations
- 2.1. Basicequationsoffluiddynamics
- 2.2. Soundwaves
- 3. TransformationofSoundWavesinNon-StationaryMediawithAbruptlyChangingParameters
- 4. TransformationofSoundWavesinNon-StationaryMediawithSmoothlyChangingParameters
- 5. Conclusion
- Acknowledgments
- References
- TOMOGRAPHY TECHNIQUE TO SYNOPTIC MAPPING OF OCEAN MESO-SCALE FIELD
- ABSTRACT
- INTRODUCTION
- 1. MATHEMATICAL FORMULATION AND MODELING
- 1.1. Ocean Model
- Oceanic Variability and its Effect on Acoustics
- 1.1a. Synoptic (Meso-Scale) Eddies
- 1.1b. Large Scale Currents and Frontal Zones
- 1.2a. Internal Waves
- 1.2b. Vertical Fine Structure
- 1.2c. Small Scale Turbulence
- 1.3. Forward Problem
- 1.4. Stochastic Inverse
- 2. DATA AND SIMULATION
- 3. RESULTS AND DISCUSSION
- 3.1. Sound Velocity Field
- 3.2. EOF Modes
- 3.3. Data Resolution Matrix)(TppUU
- 3.4. Model Resolution Matrix)(TppVV
- 3.5. Eigen Rays
- 3.6. Ray Arrival Pattern
- 3.7. Acoustic Intensity
- 3.8. Inversion
- Building the Estimates.
- 4. OBJECTIVE MAPPING OF TEMPERATURE FIELD BY STOCHASTIC INVERSE METHOD USING ACOUSTIC TOMOGRAPHY EXPERIMENTAL DATA OF EASTERN ARABIAN SEA
- ACKNOWLEDGMENTS
- APPENDIX A
- A1. Elements of Ocean Acoustics
- A1.1. Wave Equation
- A1.2. Ray Theory
- APPENDIX-B
- B1. Computational Procedures:
- B2. Closeness Ratio
- REFERENCES
- INDEX.