Cargando…

Examples in Markov Decision Processes.

This invaluable book provides approximately eighty examples illustrating the theory of controlled discrete-time Markov processes. Except for applications of the theory to real-life problems like stock exchange, queues, gambling, optimal search etc, the main attention is paid to counter-intuitive, un...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Piunovskiy, A. B.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific Publishing Company, 2012.
Colección:Imperial College Press optimization series.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn830162389
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 130316s2012 si o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d YDXCP  |d N$T  |d DEBSZ  |d OCLCQ  |d OCLCF  |d OCLCQ  |d AGLDB  |d MERUC  |d ZCU  |d OCLCQ  |d VTS  |d ICG  |d OCLCQ  |d STF  |d DKC  |d OCLCQ  |d M8D  |d UKAHL  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 1086964971  |a 1264885637  |a 1264926938  |a 1297132851  |a 1297267500 
020 |a 9781848167940  |q (electronic bk.) 
020 |a 1848167946  |q (electronic bk.) 
029 1 |a AU@  |b 000052915311 
029 1 |a DEBBG  |b BV043093511 
029 1 |a DEBBG  |b BV044173989 
029 1 |a DEBSZ  |b 380381389 
029 1 |a DEBSZ  |b 421272562 
029 1 |a DEBSZ  |b 454998287 
029 1 |a AU@  |b 000073140900 
035 |a (OCoLC)830162389  |z (OCoLC)1086964971  |z (OCoLC)1264885637  |z (OCoLC)1264926938  |z (OCoLC)1297132851  |z (OCoLC)1297267500 
050 4 |a QA274.7 
072 7 |a MAT  |x 029040  |2 bisacsh 
082 0 4 |a 519.233 
049 |a UAMI 
100 1 |a Piunovskiy, A. B. 
245 1 0 |a Examples in Markov Decision Processes. 
260 |a Singapore :  |b World Scientific Publishing Company,  |c 2012. 
300 |a 1 online resource (308 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Imperial College Press Optimization Series ;  |v v. 2 
588 0 |a Print version record. 
505 0 |a Preface; 1. Finite-Horizon Models; 1.1 Preliminaries; 1.2 Model Description; 1.3 Dynamic Programming Approach; 1.4 Examples; 1.4.1 Non-transitivity of the correlation; 1.4.2 The more frequently used control is not better; 1.4.3 Voting; 1.4.4 The secretary problem; 1.4.5 Constrained optimization; 1.4.6 Equivalent Markov selectors in non-atomic MDPs; 1.4.7 Strongly equivalent Markov selectors in nonatomic MDPs; 1.4.8 Stock exchange; 1.4.9 Markov or non-Markov strategy? Randomized or not? When is the Bellman principle violated?; 1.4.10 Uniformly optimal, but not optimal strategy. 
505 8 |a 1.4.11 Martingales and the Bellman principle1.4.12 Conventions on expectation and infinities; 1.4.13 Nowhere-differentiable function vt(x); discontinuous function vt(x); 1.4.14 The non-measurable Bellman function; 1.4.15 No one strategy is uniformly -optimal; 1.4.16 Semi-continuous model; 2. Homogeneous Infinite-Horizon Models: Expected Total Loss; 2.1 Homogeneous Non-discounted Model; 2.2 Examples; 2.2.1 Mixed Strategies; 2.2.2 Multiple solutions to the optimality equation; 2.2.3 Finite model: multiple solutions to the optimality equation; conserving but not equalizing strategy. 
505 8 |a 2.2.4 The single conserving strategy is not equalizing and not optimal2.2.5 When strategy iteration is not successful; 2.2.6 When value iteration is not successful; 2.2.7 When value iteration is not successful: positive model I; 2.2.8 When value iteration is not successful: positive model II; 2.2.9 Value iteration and stability in optimal stopping problems; 2.2.10 A non-equalizing strategy is uniformly optimal; 2.2.11 A stationary uniformly -optimal selector does not exist (positive model); 2.2.12 A stationary uniformly -optimal selector does not exist (negative model). 
505 8 |a 2.2.13 Finite-action negative model where a stationary uniformly -optimal selector does not exist2.2.14 Nearly uniformly optimal selectors in negative models; 2.2.15 Semi-continuous models and the blackmailer's dilemma; 2.2.16 Not a semi-continuous model; 2.2.17 The Bellman function is non-measurable and no one strategy is uniformly -optimal; 2.2.18 A randomized strategy is better than any selector (finite action space); 2.2.19 The fluid approximation does not work; 2.2.20 The fluid approximation: refined model; 2.2.21 Occupation measures: phantom solutions. 
505 8 |a 2.2.22 Occupation measures in transient models2.2.23 Occupation measures and duality; 2.2.24 Occupation measures: compactness; 2.2.25 The bold strategy in gambling is not optimal (house limit); 2.2.26 The bold strategy in gambling is not optimal (inflation); 2.2.27 Search strategy for a moving target; 2.2.28 The three-way duel ("Truel"); 3. Homogeneous Infinite-Horizon Models: Discounted Loss; 3.1 Preliminaries; 3.2 Examples; 3.2.1 Phantom solutions of the optimality equation; 3.2.2 When value iteration is not successful: positive model. 
500 |a 3.2.3 A non-optimal strategy for which v x solves the optimality equation. 
520 |a This invaluable book provides approximately eighty examples illustrating the theory of controlled discrete-time Markov processes. Except for applications of the theory to real-life problems like stock exchange, queues, gambling, optimal search etc, the main attention is paid to counter-intuitive, unexpected properties of optimization problems. Such examples illustrate the importance of conditions imposed in the theorems on Markov Decision Processes. Many of the examples are based upon examples published earlier in journal articles or textbooks while several other examples are new. The aim was. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Markov processes. 
650 6 |a Processus de Markov. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x Stochastic Processes.  |2 bisacsh 
650 7 |a Markov processes  |2 fast 
758 |i has work:  |a Examples in Markov decision processes (Text)  |1 https://id.oclc.org/worldcat/entity/E39PD36JPqF83j9v37dcp6YMRq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Piunovskiy, A.B.  |t Examples in Markov Decision Processes.  |d Singapore : World Scientific Publishing Company, ©2012  |z 9781848167933 
830 0 |a Imperial College Press optimization series. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1143323  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25007156 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1143323 
938 |a EBSCOhost  |b EBSC  |n 545467 
938 |a YBP Library Services  |b YANK  |n 10258426 
994 |a 92  |b IZTAP