Cargando…

Chaos, CNN, memristors and beyond : a Festschrift for Leon Chua /

This invaluable book is a unique collection of tributes to outstanding discoveries pioneered by Leon Chua in nonlinear circuits, cellular neural networks, and chaos. It is comprised of three parts. The first - cellular nonlinear networks, nonlinear circuits and cellular automata - deals with Chua�...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Adamatzky, Andrew, Chen, G. (Guanrong), Chua, Leon O., 1936-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific Pub. Co., 2013.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Preface; CONTENTS; Part I. Cellular Nonlinear Networks, Nonlinear Circuits and Cellular Automata; 1. Genealogy of Chua's Circuit Peter Kennedy; 1. Introduction; 2. History; 3. Five-element Chua's Circuit; 3.1. Discrete circuit realization; 3.2. Piecewise-linear Chua diode; 3.2.1. Op amp-based negative impedance converters; 3.2.2. Current-mode negative impedance converters; 3.2.3. Transistor-based negative impedance converter and diodes; 3.3. Cubic nonlinearity; 3.4. Asymmetric nonlinearity; 3.5. Inductor; 3.5.1. Gyrator-based inductor; 3.6. Integrated circuit realization.
  • 4. Four-element Chua's Circuit5. Three-element Chaotic Circuit; 6. Summary; References; 2. Impasse Points, Mutators, and Other Chua Creations Hyongsuk Kim; 1. Introduction; 2. Impasse Points; 3. Mutators; 3.1. Realization of mutators; 3.2. Experimental verification of mutators; 4. Other Chua Creations; Acknowledgment; References; 3. Chua's Lagrangian Circuit Elements Orla Feely; 1. Introduction; 2. Chua's Presentation of Lagrangian Circuit Elements; 3. Summary; References; 4. From CNN Dynamics to Cellular Wave Computers Tamas Roska; 1. Introduction.
  • 2. Using Cellular Dynamics and Nonlinear Dynamical Circuits for Computation
  • A Prehistory3. The Standard CNN (Cellular Neural/Nonlinear Network) as the Practically Feasible Prototype Solution and Related Stability Issues; 4. Inventing the Stored Programmable Spatial-temporal Computer: The CNN Universal Machine (CNN-UM) and the Cellular Wave Computer; 5. Making the First Silicon Visual Microprocessors and its Computational Infrastructure
  • Other Physical Implementations; 6. Biological Relevance and Bio-inspiration.
  • 7. Some Fundamental Theorems
  • More than PDE, Equivalence to Fully-connectedness, Analytic Theory of CA, Godel Incompleteness8. Prototype Spatial-temporal CNN Algorithms and Novel Applications; 9. Physical and Virtual Cellular Machines with Kilo- and Mega-processor Chips and Related Topographic Algorithms; 10. Conclusions and Major New Challenges; Acknowledgment; References; 5. Contributions of CNN to Bio-robotics and Brain Science Paolo Arena and Luca Patane; 1. Introduction; 2. CNN-based CPGs for Locomotion Control in Bio-robots; 2.1. Basis of locomotion.
  • 2.2. The CNN neuron model for CPG: a slow-fast controllable limit cycle2.3. CPG in a reaction-diffusion CNN structure; 2.4. CPG in amulti-template-CNN; 3. A Brain for the Body:A CNN-based Spatio-temporal Approach; 3.1. Control architecture; 3.1.1. Sensory block; 3.1.2. Basic behaviors; 3.1.3. Representation layer; 3.1.4. Preprocessing block; 3.1.5. Perceptual core; 3.1.6. Selection network; 3.1.7. Motivation layer and learning process; 3.2. Simulation results; 3.2.1. Learning phase; 3.2.2. Testing phase; 3.2.3. Experimental results; 4. A Note on Winnerless Competition in CNNs; 5. Conclusions.