Numerical Analysis in Electromagnetics : the TLM Method.
The aim of this book is to give a broad overview of the TLM (Transmission Line Matrix) method, which is one of the "time-domain numerical methods". These methods are reputed for their significant reliance on computer resources. However, they have the advantage of being highly general. The...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Wiley,
2013.
|
Colección: | ISTE.
|
Temas: | |
Acceso en línea: | Texto completo Texto completo |
Tabla de Contenidos:
- Cover; Numerical Analysis in Electromagnetics; Title Page; Copyright Page; Table of Contents; Introduction; Chapter 1. Basis of the TLM Method: the 2D TLM Method; 1.1. Historical introduction; 1.2. 2D simulation; 1.2.1. Parallel node; 1.2.2. Series node; 1.2.3. Simulation of inhomogeneous media with losses; 1.2.4. Scattering matrices; 1.2.5. Boundary conditions; 1.2.6. Dielectric interface passage conditions; 1.2.7. Dispersion of 2D nodes; 1.3. The TLM process; 1.3.1. Basic algorithm; 1.3.2. Excitation; 1.3.3. Output signal processing; Chapter 2. 3D Nodes; 2.1. Historical development.
- 2.1.1. Distributed nodes2.1.2. Asymmetrical condensed node (ACN); 2.1.3. The symmetrical condensed node (SCN); 2.1.4. Other types of nodes; 2.2. The generalized condensed node; 2.2.1. General description; 2.2.2. Derivation of 3D TLM nodes; 2.2.3. Scattering matrices; 2.3. Time step; 2.4. Dispersion of 3D nodes; 2.4.1. Theoretical study in simple cases; 2.4.2. Case of inhomogeneous media; 2.5. Absorbing walls; 2.5.1. Matched impedance; 2.5.2. Segmentation techniques; 2.5.3. Perfectly matched layers; 2.5.4. Optimization of the PML layer profile; 2.5.5. Anisotropic and dispersive layers.
- 2.5.6. Conclusion2.6. Orthogonal curvilinear mesh; 2.6.1. 3D TLM curvilinear cell; 2.6.2. The TLM algorithm; 2.6.3. Scattering matrices for curvilinear nodes; 2.6.4. Stability conditions and the time step; 2.6.5. Validation of the algorithm; 2.7. Non-Cartesian nodes; Chapter 3. Introduction of Discrete Elements and Thin Wires in the TLM Method; 3.1. Introduction of discrete elements; 3.1.1. History of 2D TLM; 3.1.2. 3D TLM; 3.1.3. Application example: modeling of a p-n diode; 3.2. Introduction of thin wires; 3.2.1. Arbitrarily oriented thin wire model.
- 3.2.2. Validation of the arbitrarily oriented thin wire modelChapter 4. The TLM Method in Matrix Form and the Z Transform; 4.1. Introduction; 4.2. Matrix form of Maxwell's equations; 4.3. Cubic mesh normalized Maxwell's equations; 4.4. The propagation process; 4.5. Wave-matter interaction; 4.6. The normalized parallelepipedic mesh Maxwell's equations; 4.7. Application example: plasma modeling; 4.7.1. Theoretical model; 4.7.2. Validation of the TLM simulation; 4.8. Conclusion; APPENDICES; Appendix A. Development of Maxwell's Equations using the Z Transform with a Variable Mesh.
- Appendix B. Treatment of Plasma using the Z Transform for the TLM MethodBibliography; Index.