The Wigner Monte-Carlo Method for Nanoelectronic Devices : a Particle Description of Quantum Transport and Decoherence.
This book gives an overview of the quantum transport approaches for nanodevices and focuses on the Wigner formalism. It details the implementation of a particle-based Monte Carlo solution of the Wigner transport equation and how the technique is applied to typical devices exhibiting quantum phenomen...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken :
Wiley,
2013.
|
Colección: | ISTE.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; The Wigner Monte Carlo Method for Nanoelectronic Devices; Title Page; Copyright Page; Table of Contents; Symbols; Abbreviations; Introduction; Acknowledgements; Chapter 1. Theoretical Framework of Quantum Transport in Semiconductors and Devices; 1.1. The fundamentals: a brief introduction to phonons, quasi-electrons and envelope functions; 1.1.1. The basic concepts: band structure and phonon dispersion; 1.1.2. Quasi-electron/phonon scattering; 1.1.3. Quasi-electron/quasi-electron and quasi-electron/impurity scattering; 1.2. The semi-classical approach of transport.
- 1.2.1. The Boltzmann transport equation1.2.2. Quantum corrections to the Boltzmann equation; 1.3. The quantum treatment of envelope functions; 1.3.1. The density matrix formalism; 1.3.2. The Wigner function formalism; 1.3.3. The Green's functions formalism; 1.4. The two main problems of quantum transport; 1.4.1. The first problem: the modeling of contacts; 1.4.2. The second problem: the treatment of collisions/scattering in quantum transport; Chapter 2. Particle-based Monte Carlo Approach to Wigner-Boltzmann Device Simulation; 2.1. The particle Monte Carlo technique to solve the BTE.
- 2.1.1. Principles and algorithm2.1.2. Multi-subband transport: mode-space approach; 2.2. Extension of the particle Monte Carlo technique to the WBTE: principles; 2.2.1. The Wigner paths method; 2.2.2. The "full Monte Carlo" method; 2.2.3. The "continuous affinity" method technique; 2.3. Simple validations via two typical cases; 2.3.1. First validation of the quantum mechanical treatment: interaction of a wave packet with a tunneling barrier; 2.3.2. Validation of the semi-classical treatment: N+/N/N+ diode; 2.4. Conclusion.
- Chapter 3. Application of the Wigner Monte Carlo Method to RTD, MOSFET and CNTFET3.1. The resonant tunneling diode (RTD); 3.1.1. Introduction to the RTD; 3.1.2. Model, simulated structure and current-voltage characteristics; 3.1.3. Microscopic quantities; 3.1.4. Comparison with experiment; 3.1.5. Comparison with the Green's function formalism; 3.2. The double-gate metal-oxide-semiconductor field-effect transistor (DG-MOSFET); 3.2.1. Introduction to the DG-MOSFET; 3.2.2. Simulated devices; 3.2.3. Model: transport and scattering; 3.2.4. Subband profiles and mode-space wave functions.
- 3.2.5. Quantum transport effects3.2.6. Impact of scattering; 3.2.7. Design of nano-MOSFET and factors of merit for CMOS applications; 3.2.8. Degeneracy effects in source and drain access; 3.2.9. Some comparisons with experiments; 3.3. The carbon nanotube field-effect transistor (CNTFET); 3.3.1. Introduction to the CNTFET; 3.3.2. Simulated device; 3.3.3. Model: band structure, transport and scattering; 3.3.4. Quantum transport effect; 3.4. Conclusion; 3.4.1. Summary of main results; 3.4.2. Prospective conclusions regarding CMOS devices.