Cargando…

The Wigner Monte-Carlo Method for Nanoelectronic Devices : a Particle Description of Quantum Transport and Decoherence.

This book gives an overview of the quantum transport approaches for nanodevices and focuses on the Wigner formalism. It details the implementation of a particle-based Monte Carlo solution of the Wigner transport equation and how the technique is applied to typical devices exhibiting quantum phenomen...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Querlioz, Damien
Otros Autores: Dollfus, Philippe
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken : Wiley, 2013.
Colección:ISTE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn830161850
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 130316s2013 xx o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDXCP  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d MERUC  |d ZCU  |d ICG  |d OCLCF  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781118618448 
020 |a 1118618440 
029 1 |a DEBBG  |b BV044050110 
029 1 |a DEBSZ  |b 431356122 
029 1 |a DEBSZ  |b 449349462 
035 |a (OCoLC)830161850 
050 4 |a QC176 .Q48 2013 
082 0 4 |a 530.4/10151  |a 530.410151 
049 |a UAMI 
100 1 |a Querlioz, Damien. 
245 1 4 |a The Wigner Monte-Carlo Method for Nanoelectronic Devices :  |b a Particle Description of Quantum Transport and Decoherence. 
260 |a Hoboken :  |b Wiley,  |c 2013. 
300 |a 1 online resource (268 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a ISTE 
588 0 |a Print version record. 
505 0 |a Cover; The Wigner Monte Carlo Method for Nanoelectronic Devices; Title Page; Copyright Page; Table of Contents; Symbols; Abbreviations; Introduction; Acknowledgements; Chapter 1. Theoretical Framework of Quantum Transport in Semiconductors and Devices; 1.1. The fundamentals: a brief introduction to phonons, quasi-electrons and envelope functions; 1.1.1. The basic concepts: band structure and phonon dispersion; 1.1.2. Quasi-electron/phonon scattering; 1.1.3. Quasi-electron/quasi-electron and quasi-electron/impurity scattering; 1.2. The semi-classical approach of transport. 
505 8 |a 1.2.1. The Boltzmann transport equation1.2.2. Quantum corrections to the Boltzmann equation; 1.3. The quantum treatment of envelope functions; 1.3.1. The density matrix formalism; 1.3.2. The Wigner function formalism; 1.3.3. The Green's functions formalism; 1.4. The two main problems of quantum transport; 1.4.1. The first problem: the modeling of contacts; 1.4.2. The second problem: the treatment of collisions/scattering in quantum transport; Chapter 2. Particle-based Monte Carlo Approach to Wigner-Boltzmann Device Simulation; 2.1. The particle Monte Carlo technique to solve the BTE. 
505 8 |a 2.1.1. Principles and algorithm2.1.2. Multi-subband transport: mode-space approach; 2.2. Extension of the particle Monte Carlo technique to the WBTE: principles; 2.2.1. The Wigner paths method; 2.2.2. The "full Monte Carlo" method; 2.2.3. The "continuous affinity" method technique; 2.3. Simple validations via two typical cases; 2.3.1. First validation of the quantum mechanical treatment: interaction of a wave packet with a tunneling barrier; 2.3.2. Validation of the semi-classical treatment: N+/N/N+ diode; 2.4. Conclusion. 
505 8 |a Chapter 3. Application of the Wigner Monte Carlo Method to RTD, MOSFET and CNTFET3.1. The resonant tunneling diode (RTD); 3.1.1. Introduction to the RTD; 3.1.2. Model, simulated structure and current-voltage characteristics; 3.1.3. Microscopic quantities; 3.1.4. Comparison with experiment; 3.1.5. Comparison with the Green's function formalism; 3.2. The double-gate metal-oxide-semiconductor field-effect transistor (DG-MOSFET); 3.2.1. Introduction to the DG-MOSFET; 3.2.2. Simulated devices; 3.2.3. Model: transport and scattering; 3.2.4. Subband profiles and mode-space wave functions. 
505 8 |a 3.2.5. Quantum transport effects3.2.6. Impact of scattering; 3.2.7. Design of nano-MOSFET and factors of merit for CMOS applications; 3.2.8. Degeneracy effects in source and drain access; 3.2.9. Some comparisons with experiments; 3.3. The carbon nanotube field-effect transistor (CNTFET); 3.3.1. Introduction to the CNTFET; 3.3.2. Simulated device; 3.3.3. Model: band structure, transport and scattering; 3.3.4. Quantum transport effect; 3.4. Conclusion; 3.4.1. Summary of main results; 3.4.2. Prospective conclusions regarding CMOS devices. 
500 |a Chapter 4. Decoherence and Transition from Quantum to Semi-classical Transport. 
520 |a This book gives an overview of the quantum transport approaches for nanodevices and focuses on the Wigner formalism. It details the implementation of a particle-based Monte Carlo solution of the Wigner transport equation and how the technique is applied to typical devices exhibiting quantum phenomena, such as the resonant tunnelling diode, the ultra-short silicon MOSFET and the carbon nanotube transistor. In the final part, decoherence theory is used to explain the emergence of the semi-classical transport in nanodevices. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Solid state physics  |x Mathematics. 
650 0 |a Semiconductors. 
650 0 |a Transport theory. 
650 0 |a Coherent states. 
650 0 |a Quantum statistics. 
650 0 |a Particles (Nuclear physics) 
650 0 |a Nanoelectronics. 
650 0 |a Wigner distribution. 
650 0 |a Monte Carlo method. 
650 6 |a Physique de l'état solide  |x Mathématiques. 
650 6 |a Semi-conducteurs. 
650 6 |a Théorie du transport. 
650 6 |a États cohérents. 
650 6 |a Statistique quantique. 
650 6 |a Particules (Physique nucléaire) 
650 6 |a Nanoélectronique. 
650 6 |a Distribution de Wigner. 
650 6 |a Méthode de Monte-Carlo. 
650 7 |a semiconductor.  |2 aat 
650 7 |a particle physics.  |2 aat 
650 7 |a Coherent states  |2 fast 
650 7 |a Monte Carlo method  |2 fast 
650 7 |a Nanoelectronics  |2 fast 
650 7 |a Particles (Nuclear physics)  |2 fast 
650 7 |a Quantum statistics  |2 fast 
650 7 |a Semiconductors  |2 fast 
650 7 |a Solid state physics  |x Mathematics  |2 fast 
650 7 |a Transport theory  |2 fast 
650 7 |a Wigner distribution  |2 fast 
700 1 |a Dollfus, Philippe. 
758 |i has work:  |a The Wigner Monte Carlo method for nanoelectronic devices (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCG8DqVwPkXtKwYBDtFV8JC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Querlioz, Damien.  |t Wigner Monte-Carlo Method for Nanoelectronic Devices : A Particle Description of Quantum Transport and Decoherence.  |d Hoboken : Wiley, ©2013  |z 9781848211506 
830 0 |a ISTE. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1143523  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1143523 
938 |a YBP Library Services  |b YANK  |n 10349673 
994 |a 92  |b IZTAP