|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_ocn830161850 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
130316s2013 xx o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d YDXCP
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d MERUC
|d ZCU
|d ICG
|d OCLCF
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d DKC
|d AU@
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
020 |
|
|
|a 9781118618448
|
020 |
|
|
|a 1118618440
|
029 |
1 |
|
|a DEBBG
|b BV044050110
|
029 |
1 |
|
|a DEBSZ
|b 431356122
|
029 |
1 |
|
|a DEBSZ
|b 449349462
|
035 |
|
|
|a (OCoLC)830161850
|
050 |
|
4 |
|a QC176 .Q48 2013
|
082 |
0 |
4 |
|a 530.4/10151
|a 530.410151
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Querlioz, Damien.
|
245 |
1 |
4 |
|a The Wigner Monte-Carlo Method for Nanoelectronic Devices :
|b a Particle Description of Quantum Transport and Decoherence.
|
260 |
|
|
|a Hoboken :
|b Wiley,
|c 2013.
|
300 |
|
|
|a 1 online resource (268 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a ISTE
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; The Wigner Monte Carlo Method for Nanoelectronic Devices; Title Page; Copyright Page; Table of Contents; Symbols; Abbreviations; Introduction; Acknowledgements; Chapter 1. Theoretical Framework of Quantum Transport in Semiconductors and Devices; 1.1. The fundamentals: a brief introduction to phonons, quasi-electrons and envelope functions; 1.1.1. The basic concepts: band structure and phonon dispersion; 1.1.2. Quasi-electron/phonon scattering; 1.1.3. Quasi-electron/quasi-electron and quasi-electron/impurity scattering; 1.2. The semi-classical approach of transport.
|
505 |
8 |
|
|a 1.2.1. The Boltzmann transport equation1.2.2. Quantum corrections to the Boltzmann equation; 1.3. The quantum treatment of envelope functions; 1.3.1. The density matrix formalism; 1.3.2. The Wigner function formalism; 1.3.3. The Green's functions formalism; 1.4. The two main problems of quantum transport; 1.4.1. The first problem: the modeling of contacts; 1.4.2. The second problem: the treatment of collisions/scattering in quantum transport; Chapter 2. Particle-based Monte Carlo Approach to Wigner-Boltzmann Device Simulation; 2.1. The particle Monte Carlo technique to solve the BTE.
|
505 |
8 |
|
|a 2.1.1. Principles and algorithm2.1.2. Multi-subband transport: mode-space approach; 2.2. Extension of the particle Monte Carlo technique to the WBTE: principles; 2.2.1. The Wigner paths method; 2.2.2. The "full Monte Carlo" method; 2.2.3. The "continuous affinity" method technique; 2.3. Simple validations via two typical cases; 2.3.1. First validation of the quantum mechanical treatment: interaction of a wave packet with a tunneling barrier; 2.3.2. Validation of the semi-classical treatment: N+/N/N+ diode; 2.4. Conclusion.
|
505 |
8 |
|
|a Chapter 3. Application of the Wigner Monte Carlo Method to RTD, MOSFET and CNTFET3.1. The resonant tunneling diode (RTD); 3.1.1. Introduction to the RTD; 3.1.2. Model, simulated structure and current-voltage characteristics; 3.1.3. Microscopic quantities; 3.1.4. Comparison with experiment; 3.1.5. Comparison with the Green's function formalism; 3.2. The double-gate metal-oxide-semiconductor field-effect transistor (DG-MOSFET); 3.2.1. Introduction to the DG-MOSFET; 3.2.2. Simulated devices; 3.2.3. Model: transport and scattering; 3.2.4. Subband profiles and mode-space wave functions.
|
505 |
8 |
|
|a 3.2.5. Quantum transport effects3.2.6. Impact of scattering; 3.2.7. Design of nano-MOSFET and factors of merit for CMOS applications; 3.2.8. Degeneracy effects in source and drain access; 3.2.9. Some comparisons with experiments; 3.3. The carbon nanotube field-effect transistor (CNTFET); 3.3.1. Introduction to the CNTFET; 3.3.2. Simulated device; 3.3.3. Model: band structure, transport and scattering; 3.3.4. Quantum transport effect; 3.4. Conclusion; 3.4.1. Summary of main results; 3.4.2. Prospective conclusions regarding CMOS devices.
|
500 |
|
|
|a Chapter 4. Decoherence and Transition from Quantum to Semi-classical Transport.
|
520 |
|
|
|a This book gives an overview of the quantum transport approaches for nanodevices and focuses on the Wigner formalism. It details the implementation of a particle-based Monte Carlo solution of the Wigner transport equation and how the technique is applied to typical devices exhibiting quantum phenomena, such as the resonant tunnelling diode, the ultra-short silicon MOSFET and the carbon nanotube transistor. In the final part, decoherence theory is used to explain the emergence of the semi-classical transport in nanodevices.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Solid state physics
|x Mathematics.
|
650 |
|
0 |
|a Semiconductors.
|
650 |
|
0 |
|a Transport theory.
|
650 |
|
0 |
|a Coherent states.
|
650 |
|
0 |
|a Quantum statistics.
|
650 |
|
0 |
|a Particles (Nuclear physics)
|
650 |
|
0 |
|a Nanoelectronics.
|
650 |
|
0 |
|a Wigner distribution.
|
650 |
|
0 |
|a Monte Carlo method.
|
650 |
|
6 |
|a Physique de l'état solide
|x Mathématiques.
|
650 |
|
6 |
|a Semi-conducteurs.
|
650 |
|
6 |
|a Théorie du transport.
|
650 |
|
6 |
|a États cohérents.
|
650 |
|
6 |
|a Statistique quantique.
|
650 |
|
6 |
|a Particules (Physique nucléaire)
|
650 |
|
6 |
|a Nanoélectronique.
|
650 |
|
6 |
|a Distribution de Wigner.
|
650 |
|
6 |
|a Méthode de Monte-Carlo.
|
650 |
|
7 |
|a semiconductor.
|2 aat
|
650 |
|
7 |
|a particle physics.
|2 aat
|
650 |
|
7 |
|a Coherent states
|2 fast
|
650 |
|
7 |
|a Monte Carlo method
|2 fast
|
650 |
|
7 |
|a Nanoelectronics
|2 fast
|
650 |
|
7 |
|a Particles (Nuclear physics)
|2 fast
|
650 |
|
7 |
|a Quantum statistics
|2 fast
|
650 |
|
7 |
|a Semiconductors
|2 fast
|
650 |
|
7 |
|a Solid state physics
|x Mathematics
|2 fast
|
650 |
|
7 |
|a Transport theory
|2 fast
|
650 |
|
7 |
|a Wigner distribution
|2 fast
|
700 |
1 |
|
|a Dollfus, Philippe.
|
758 |
|
|
|i has work:
|a The Wigner Monte Carlo method for nanoelectronic devices (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCG8DqVwPkXtKwYBDtFV8JC
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Querlioz, Damien.
|t Wigner Monte-Carlo Method for Nanoelectronic Devices : A Particle Description of Quantum Transport and Decoherence.
|d Hoboken : Wiley, ©2013
|z 9781848211506
|
830 |
|
0 |
|a ISTE.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1143523
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL1143523
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10349673
|
994 |
|
|
|a 92
|b IZTAP
|