Carbon Nanotubes and Nanosensors : Vibration, Buckling and Balistic Impact.
The main properties that make carbon nanotubes (CNTs) a promising technology for many future applications are: extremely high strength, low mass density, linear elastic behavior, almost perfect geometrical structure, and nanometer scale structure. Also, CNTs can conduct electricity better than coppe...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Wiley,
2013.
|
Colección: | ISTE.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Title Page; Copyright Page; Table of Contents; Preface; Chapter 1. Introduction; 1.1. The need of determining the natural frequencies and buckling loads of CNTs; 1.2. Determination of natural frequencies of SWCNT as a uniform beam model and MWCNT during coaxial deflection; 1.3. Beam model of MWCNT; 1.4. CNTs embedded in an elastic medium; Chapter 2. Fundamental Natural Frequencies of Double-Walled Carbon Nanotubes; 2.1. Background; 2.2. Analysis; 2.3. Simply supported DWCNT: exact solution; 2.4. Simply supported DWCNT: Bubnov-Galerkin method
- 2.5. Simply supported DWCNT: Petrov-Galerkin method2.6. Clamped-clamped DWCNT: Bubnov-Galerkin method; 2.7. Clamped-clamped DWCNT: Petrov-Galerkin method; 2.8. Simply supported-clamped DWCNT; 2.9. Clamped-free DWCNT; 2.10. Comparison with results of Natsuki et al. [NAT 08a]; 2.11. On closing the gap on carbon nanotubes; 2.11.1. Linear analysis; 2.11.2. Nonlinear analysis; 2.12. Discussion; Chapter 3. Free Vibrations of the Triple-Walled Carbon Nanotubes; 3.1. Background; 3.2. Analysis; 3.3. Simply supported TWCNT: exact solution; 3.4. Simply supported TWCNT: approximate solutions
- 3.5. Clamped-clamped TWCNT: approximate solutions3.6. Simply supported-clamped TWCNT: approximate solutions; 3.7. Clamped-free TWCNT: approximate solutions; 3.8. Summary; Chapter 4. Exact Solution for Natural Frequencies of Clamped-Clamped Double-Walled Carbon Nanotubes; 4.1. Background; 4.2. Analysis; 4.3. Analytical exact solution; 4.4. Numerical results and discussion; 4.4.1. Bubnov-Galerkin method; 4.5. Discussion; 4.6. Summary; Chapter 5. Natural Frequencies of Carbon Nanotubes Based on a Consistent Version of Bresse-Timoshenko Theory; 5.1. Background
- 5.2. Bresse-Timoshenko equations for homogeneous beams5.3. DWCNT modeled on the basis of consistent Bresse-Timoshenko equations; 5.4. Numerical results and discussion; Chapter 6. Natural Frequencies of Double-Walled Carbon Nanotubes Based on Donnell Shell Theory; 6.1. Background; 6.2. Donnell shell theory for the vibration of MWCNTs; 6.3. Donnell shell theory for the vibration of a simply supported DWCNT; 6.4. DWCNT modeled on the basis of simplified Donnell shell theory; 6.5. Further simplifications of the Donnell shell theory; 6.6. Summary
- Chapter 7. Buckling of a Double-Walled Carbon Nanotube7.1. Background; 7.2. Analysis; 7.3. Simply supported DWCNT: exact solution; 7.4. Simply supported DWCNT: Bubnov-Galerkin method; 7.5. Simply supported DWCNTs: Petrov-Galerkin method; 7.6. Clamped-clamped DWCNT; 7.7. Simply supported-clamped DWCNT; 7.8. Buckling of a clamped-free DWCNT by finite difference method; 7.9. Buckling of a clamped-free DWCNT by Bubnov-Galerkin method; 7.9.1. Analysis; 7.9.2. Results; 7.9.3. Conclusion; 7.10. Summary; Chapter 8. Ballistic Impact on a Single-Walled Carbon Nanotube; 8.1. Background; 8.2. Analysis