|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_ocn830161740 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
130316s2013 enk ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d YDXCP
|d N$T
|d UKDOC
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d LOA
|d D6H
|d OCLCQ
|d AZK
|d COCUF
|d PIFBY
|d MERUC
|d OCLCQ
|d ZCU
|d OCLCF
|d OCLCQ
|d DKC
|d OCLCQ
|d HS0
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 960201381
|a 961673185
|a 987727821
|a 992115502
|
020 |
|
|
|a 9781118563304
|q (electronic bk.)
|
020 |
|
|
|a 1118563301
|q (electronic bk.)
|
020 |
|
|
|z 184821345X
|
020 |
|
|
|z 9781848213456
|
029 |
1 |
|
|a AU@
|b 000055878937
|
029 |
1 |
|
|a DEBSZ
|b 431356297
|
035 |
|
|
|a (OCoLC)830161740
|z (OCoLC)960201381
|z (OCoLC)961673185
|z (OCoLC)987727821
|z (OCoLC)992115502
|
050 |
|
4 |
|a TA418.9.N35
|
072 |
|
7 |
|a TEC
|x 021000
|2 bisacsh
|
082 |
0 |
4 |
|a 620.1/15
|a 620.115
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Elishakoff, Isaac.
|
245 |
1 |
0 |
|a Carbon Nanotubes and Nanosensors :
|b Vibration, Buckling and Balistic Impact.
|
260 |
|
|
|a London :
|b Wiley,
|c 2013.
|
300 |
|
|
|a 1 online resource (437 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a ISTE
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a The main properties that make carbon nanotubes (CNTs) a promising technology for many future applications are: extremely high strength, low mass density, linear elastic behavior, almost perfect geometrical structure, and nanometer scale structure. Also, CNTs can conduct electricity better than copper and transmit heat better than diamonds. Therefore, they are bound to find a wide, and possibly revolutionary use in all fields of engineering. The interest in CNTs and their potential use in a wide range of commercial applications; such as nanoelectronics, quantum wire interconnects, field em.
|
504 |
|
|
|a Includes bibliographical references and indexes.
|
505 |
0 |
|
|a Cover; Title Page; Copyright Page; Table of Contents; Preface; Chapter 1. Introduction; 1.1. The need of determining the natural frequencies and buckling loads of CNTs; 1.2. Determination of natural frequencies of SWCNT as a uniform beam model and MWCNT during coaxial deflection; 1.3. Beam model of MWCNT; 1.4. CNTs embedded in an elastic medium; Chapter 2. Fundamental Natural Frequencies of Double-Walled Carbon Nanotubes; 2.1. Background; 2.2. Analysis; 2.3. Simply supported DWCNT: exact solution; 2.4. Simply supported DWCNT: Bubnov-Galerkin method
|
505 |
8 |
|
|a 2.5. Simply supported DWCNT: Petrov-Galerkin method2.6. Clamped-clamped DWCNT: Bubnov-Galerkin method; 2.7. Clamped-clamped DWCNT: Petrov-Galerkin method; 2.8. Simply supported-clamped DWCNT; 2.9. Clamped-free DWCNT; 2.10. Comparison with results of Natsuki et al. [NAT 08a]; 2.11. On closing the gap on carbon nanotubes; 2.11.1. Linear analysis; 2.11.2. Nonlinear analysis; 2.12. Discussion; Chapter 3. Free Vibrations of the Triple-Walled Carbon Nanotubes; 3.1. Background; 3.2. Analysis; 3.3. Simply supported TWCNT: exact solution; 3.4. Simply supported TWCNT: approximate solutions
|
505 |
8 |
|
|a 3.5. Clamped-clamped TWCNT: approximate solutions3.6. Simply supported-clamped TWCNT: approximate solutions; 3.7. Clamped-free TWCNT: approximate solutions; 3.8. Summary; Chapter 4. Exact Solution for Natural Frequencies of Clamped-Clamped Double-Walled Carbon Nanotubes; 4.1. Background; 4.2. Analysis; 4.3. Analytical exact solution; 4.4. Numerical results and discussion; 4.4.1. Bubnov-Galerkin method; 4.5. Discussion; 4.6. Summary; Chapter 5. Natural Frequencies of Carbon Nanotubes Based on a Consistent Version of Bresse-Timoshenko Theory; 5.1. Background
|
505 |
8 |
|
|a 5.2. Bresse-Timoshenko equations for homogeneous beams5.3. DWCNT modeled on the basis of consistent Bresse-Timoshenko equations; 5.4. Numerical results and discussion; Chapter 6. Natural Frequencies of Double-Walled Carbon Nanotubes Based on Donnell Shell Theory; 6.1. Background; 6.2. Donnell shell theory for the vibration of MWCNTs; 6.3. Donnell shell theory for the vibration of a simply supported DWCNT; 6.4. DWCNT modeled on the basis of simplified Donnell shell theory; 6.5. Further simplifications of the Donnell shell theory; 6.6. Summary
|
505 |
8 |
|
|a Chapter 7. Buckling of a Double-Walled Carbon Nanotube7.1. Background; 7.2. Analysis; 7.3. Simply supported DWCNT: exact solution; 7.4. Simply supported DWCNT: Bubnov-Galerkin method; 7.5. Simply supported DWCNTs: Petrov-Galerkin method; 7.6. Clamped-clamped DWCNT; 7.7. Simply supported-clamped DWCNT; 7.8. Buckling of a clamped-free DWCNT by finite difference method; 7.9. Buckling of a clamped-free DWCNT by Bubnov-Galerkin method; 7.9.1. Analysis; 7.9.2. Results; 7.9.3. Conclusion; 7.10. Summary; Chapter 8. Ballistic Impact on a Single-Walled Carbon Nanotube; 8.1. Background; 8.2. Analysis
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Nanotubes
|x Impact testing.
|
650 |
|
0 |
|a Nanotubes
|x Elastic properties.
|
650 |
|
0 |
|a Detectors
|x Testing.
|
650 |
|
6 |
|a Nanotubes
|x Essais de résilience.
|
650 |
|
6 |
|a Nanotubes
|x Propriétés élastiques.
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Material Science.
|2 bisacsh
|
650 |
|
7 |
|a Detectors
|x Testing
|2 fast
|
758 |
|
|
|i has work:
|a Carbon nanotubes and nanosensors (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFyyRwgqgDRVPFPDmDCBpq
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Elishakoff, Isaac.
|t Carbon Nanotubes and Nanosensors : Vibration, Buckling and Balistic Impact.
|d London : Wiley, ©2013
|z 9781848213456
|
830 |
|
0 |
|a ISTE.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1143591
|z Texto completo
|
938 |
|
|
|a 123Library
|b 123L
|n 93968
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1143591
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 561375
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 9984813
|
994 |
|
|
|a 92
|b IZTAP
|