Fatigue of Materials and Structures : Applications to Design and Damage.
The design of mechanical structures with predictable and improved durability cannot be achieved without a thorough understanding of the mechanisms of fatigue damage and more specifically the relationships between the microstructure of materials and their fatigue properties. Written by leading resear...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés Francés |
Publicado: |
London :
Wiley,
2013.
|
Colección: | ISTE.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Fatigue of Materials and Structures; Title Page; Copyright Page; Table of Contents; Foreword; Chapter 1. Multiaxial Fatigue; 1.1 Introduction; 1.1.1. Variables in a plane; 1.1.2. Invariants; 1.1.3. Classification of the cracking modes; 1.2. Experimental aspects; 1.2.1. Multiaxial fatigue experiments; 1.2.2. Main results; 1.2.3. Notations; 1.3. Criteria specific to the unlimited endurance domain; 1.3.1. Background; 1.3.2. Global criteria; 1.3.3. Critical plane criteria; 1.3.4. Relationship between energetic and mesoscopic criteria; 1.4. Low cycle fatigue criteria; 1.4.1. Brown-Miller.
- 1.4.2. SWT criteria1.4.3. Jacquelin criterion; 1.4.4. Additive criteria under sliding and stress amplitude; 1.4.5. Onera model; 1.5. Calculating methods of the lifetime under multiaxial conditions; 1.5.1. Lifetime at N cycles for a periodic loading; 1.5.2. Damage cumulation; 1.5.3. Calculation methods; 1.6. Conclusion; 1.7. Bibliography; Chapter 2. Cumulative Damage; 2.1. Introduction; 2.2. Nonlinear fatigue cumulative damage; 2.2.1. Main observations; 2.2.2. Various types of nonlinear cumulative damage models; 2.2.3. Possible definitions of the damage variable.
- 2.3. A nonlinear cumulative fatigue damage model2.3.1. General form; 2.3.2. Special forms of functions F and G; 2.3.3. Application under complex loadings; 2.4. Damage law of incremental type; 2.4.1. Damage accumulation in strain or energy; 2.4.2. Lemaître's formulation; 2.4.3. Other incremental models; 2.5. Cumulative damage under fatigue-creep conditions; 2.5.1. Rabotnov-Kachanov creep damage law; 2.5.2. Fatigue damage; 2.5.3. Creep-fatigue interaction; 2.5.4. Practical application; 2.5.5. Fatigue-oxidation-creep interaction; 2.6. Conclusion; 2.7. Bibliography.
- Chapter 3. Damage Tolerance Design3.1. Background; 3.2. Evolution of the design concept of "fatigue" phenomenon; 3.2.1. First approach to fatigue resistance; 3.2.2. The "damage tolerance" concept; 3.2.3. Consideration of "damage tolerance"; 3.3. Impact of damage tolerance on design; 3.3.1. "Structural" impact; 3.3.2. "Material" impact; 3.4. Calculation of a "stress intensity factor"; 3.4.1. Use of the "handbook" (simple cases); 3.4.2. Use of the finite element method: simple and complex cases; 3.4.3. A simple method to get new configurations; 3.4.4. "Superposition" method.
- 3.4.5. Superposition method: applicable examples3.4.6. Numerical application exercise; 3.5. Performing some "damage tolerance" calculations; 3.5.1. Complementarity of fatigue and damage tolerance; 3.5.2. Safety coefficients to understand curve a = f(N); 3.5.3. Acquisition of the material parameters; 3.5.4. Negative parameter: corrosion
- "corrosion fatigue"; 3.6. Application to the residual strength of thin sheets; 3.6.1. Planar panels: Feddersen diagram; 3.6.2. Case of stiffened panels; 3.7. Propagation of cracks subjected to random loading in the aeronautic industry.