Cargando…

Ant Colony Optimization and Constraint Programming.

Ant colony optimization is a metaheuristic which has been successfully applied to a wide range of combinatorial optimization problems. The author describes this metaheuristic and studies its efficiency for solving some hard combinatorial problems, with a specific focus on constraint programming. The...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Solnon, Christine
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Wiley, 2013.
Colección:ISTE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn830161655
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 130316s2013 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDXCP  |d MHW  |d DG1  |d N$T  |d OCLCF  |d UKDOC  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d DEBBG  |d OCLCQ  |d DG1  |d LIP  |d MERUC  |d ZCU  |d OCLCQ  |d ICG  |d OCLCQ  |d U3W  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 992909584 
020 |a 9781118557563  |q (electronic bk.) 
020 |a 1118557565  |q (electronic bk.) 
020 |a 9781118619667  |q (electronic bk.) 
020 |a 1118619668  |q (electronic bk.) 
029 1 |a AU@  |b 000055878916 
029 1 |a CHBIS  |b 010026783 
029 1 |a CHNEW  |b 000941497 
029 1 |a CHVBK  |b 480217734 
029 1 |a DEBBG  |b BV043395630 
029 1 |a DEBBG  |b BV044174043 
029 1 |a DEBSZ  |b 400440814 
029 1 |a DEBSZ  |b 431356580 
029 1 |a NZ1  |b 15915101 
035 |a (OCoLC)830161655  |z (OCoLC)992909584 
050 4 |a QA76.612 .S6513 
072 7 |a COM  |x 051390  |2 bisacsh 
072 7 |a COM  |x 051230  |2 bisacsh 
072 7 |a COM  |x 051440  |2 bisacsh 
082 0 4 |a 005.116 
049 |a UAMI 
100 1 |a Solnon, Christine. 
245 1 0 |a Ant Colony Optimization and Constraint Programming. 
260 |a London :  |b Wiley,  |c 2013. 
300 |a 1 online resource (248 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a ISTE 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Cpoyright Page; Table of Contents; Foreword; Acknowledgements; Chapter 1. Introduction; 1.1. Overview of the book; 1.1.1. Constraint programming; 1.1.2. Ant colony optimization; 1.1.3. Constraint programming with ant colony optimization; Chapter 2. Computational Complexity; 2.1. Complexity of an algorithm; 2.2. Complexity of a problem; 2.2.1. The P class; 2.2.2. The NP class; 2.2.3. NP-complete problems; 2.2.4. NP-hard problems; 2.2.5. Undecidable problems; 2.2.6. Complexity of optimization problems; 2.3. Where the most difficult instances can be found. 
505 8 |a 2.3.1. Phase transition2.3.2. Search landscape; 2.4. Solving NP-hard problems in practice; 2.4.1. Exploitation of particular cases; 2.4.2. Approximation algorithms; 2.4.3. Heuristics and metaheuristics; 2.4.4. Structuring and filtering the search space; PART I. CONSTRAINT PROGRAMMING; Introduction to Part I; Chapter 3. Constraint Satisfaction Problems; 3.1. What is a constraint?; 3.1.1. Definition of a constraint; 3.1.2. Arity of a constraint and global constraints; 3.2. What is a constraint satisfaction problem?; 3.2.1. Complexity of CSPs; 3.3. Optimization problems related to CSPs. 
505 8 |a 3.3.1. Maximizing constraint satisfaction3.3.2. Constrained optimization; 3.4. The n-queens problem; 3.4.1. Description of the problem; 3.4.2. First CSP model; 3.4.3. Second CSP model; 3.4.4. Third CSP model; 3.4.5. Influence of the model on the solution process; 3.5. The stable marriage problem; 3.5.1. Description of the problem; 3.5.2. CSP model; 3.6. Randomly generated binary CSPs; 3.7. The car sequencing problem; 3.7.1. Description of the problem; 3.7.2. CSP model; 3.8. Discussion; Chapter 4. Exact Approaches; 4.1. Construction of a search tree; 4.2. Constraint propagation. 
505 8 |a 4.2.1. Forward checking4.2.2. Maintaining arc consistency; 4.3. Ordering heuristics; 4.3.1. Heuristics for choosing variables; 4.3.2. Heuristics for choosing values; 4.3.3. Randomized restart; 4.4. From satisfaction to optimization problems; 4.5. Discussion; Chapter 5. Perturbative Heuristic Approaches; 5.1. Genetic algorithms; 5.1.1. Basic principles; 5.1.2. Using GAs to solve CSPs; 5.2. Local search; 5.2.1. Basic principles; 5.2.2. Metaheuristics based on LS; 5.2.3. Using LS to solve CSPs; 5.3. Particle swarm optimization; 5.3.1. Basic principles; 5.3.2. Using PSO to solve CSPs. 
505 8 |a 5.4. DiscussionChapter 6. Constructive Heuristic Approaches; 6.1. Greedy randomized approaches; 6.1.1. Basic principles; 6.1.2. Using greedy randomized algorithms to solve CSPs; 6.2. Estimation of distribution algorithms; 6.2.1. Basic principles; 6.2.2. Using EDAs to solve CSPs; 6.3. Ant colony optimization; 6.4. Discussion; Chapter 7. Constraint Programming Languages; 7.1. Constraint logic programming; 7.2. Constraint programming libraries; 7.3. Constraint-based local search; 7.4. Discussion; PART II. ANT COLONY OPTIMIZATION; Introduction to Part II. 
500 |a Chapter 8. From Swarm Intelligence to Ant Colony Optimization. 
520 |a Ant colony optimization is a metaheuristic which has been successfully applied to a wide range of combinatorial optimization problems. The author describes this metaheuristic and studies its efficiency for solving some hard combinatorial problems, with a specific focus on constraint programming. The text is organized into three parts. The first part introduces constraint programming, which provides high level features to declaratively model problems by means of constraints. It describes the main existing approaches for solving constraint satisfaction problems, including complete tree search. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Constraint programming (Computer science) 
650 0 |a Mathematical optimization. 
650 0 |a Swarm intelligence. 
650 0 |a Ant algorithms. 
650 6 |a Programmation par contraintes. 
650 6 |a Optimisation mathématique. 
650 6 |a Algorithmes de colonies de fourmis. 
650 7 |a COMPUTERS  |x Programming  |x Open Source.  |2 bisacsh 
650 7 |a COMPUTERS  |x Software Development & Engineering  |x General.  |2 bisacsh 
650 7 |a COMPUTERS  |x Software Development & Engineering  |x Tools.  |2 bisacsh 
650 7 |a Ant algorithms  |2 fast 
650 7 |a Constraint programming (Computer science)  |2 fast 
650 7 |a Mathematical optimization  |2 fast 
650 7 |a Swarm intelligence  |2 fast 
758 |i has work:  |a Ant colony optimization and constraint programming (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGgPPfmwWMvFVWWKvWPgmm  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Solnon, Christine.  |t Ant Colony Optimization and Constraint Programming.  |d London : Wiley, ©2013  |z 9781848211308 
830 0 |a ISTE. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1143621  |z Texto completo 
938 |a 123Library  |b 123L  |n 93853 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1143621 
938 |a EBSCOhost  |b EBSC  |n 561340 
938 |a YBP Library Services  |b YANK  |n 10349681 
994 |a 92  |b IZTAP