Cargando…

Extended Finite Element Method for Crack Propagation /

Novel techniques for modeling 3D cracks and their evolution in solids are presented. Cracks are modeled in terms of signed distance functions (level sets). Stress, strain and displacement field are determined using the extended finite elements method (X-FEM). Non-linear constitutive behavior for the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Pommier, Sylvie
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Wiley, 2013.
Colección:ISTE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn830161622
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 130316s2013 enk ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDXCP  |d DG1  |d N$T  |d OCLCF  |d UKDOC  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d DEBBG  |d OCLCQ  |d DG1  |d LIP  |d MERUC  |d OCLCQ  |d ZCU  |d OCLCQ  |d U3W  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 992846445  |a 1087387987 
020 |a 9781118622650  |q (electronic bk.) 
020 |a 1118622650  |q (electronic bk.) 
020 |a 9781118621844  |q (electronic bk.) 
020 |a 1118621840  |q (electronic bk.) 
029 1 |a AU@  |b 000055878906 
029 1 |a CHBIS  |b 010879732 
029 1 |a CHNEW  |b 000941489 
029 1 |a CHVBK  |b 480217653 
029 1 |a DEBBG  |b BV043395623 
029 1 |a DEBSZ  |b 431356696 
029 1 |a DEBSZ  |b 449349578 
029 1 |a DEBSZ  |b 485034549 
035 |a (OCoLC)830161622  |z (OCoLC)992846445  |z (OCoLC)1087387987 
050 4 |a TA409 .E98 2013 
072 7 |a TEC  |x 013000  |2 bisacsh 
082 0 4 |a 620.1/1260151825  |a 620.11260151825 
049 |a UAMI 
245 0 0 |a Extended Finite Element Method for Crack Propagation /  |c Sylvie Pommier [and others]. 
260 |a London :  |b Wiley,  |c 2013. 
300 |a 1 online resource (280 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a ISTE 
588 0 |a Print version record. 
505 8 |a 3.5.3. Considering volumic forces3.5.4. Considering thermal loading; Chapter 4. Non-linear Problems, Crack Growth by Fatigue; 4.1. Introduction; 4.2. Fatigue and non-linear fracture mechanics; 4.2.1. Mechanisms of crack growth by fatigue; 4.2.1.1. Crack growth mechanism at low [delta]KI; 4.2.1.2. Crack growth mechanisms at average or high [delta]KI; 4.2.1.3. Macroscopic crack growth rate and striation formation; 4.2.1.4. Fatigue crack growth rate of long cracks, Paris law; 4.2.1.5. Brief conclusions; 4.2.2. Confined plasticity and consequences for crack growth; 4.2.2.1. Irwin's plastic zones. 
505 0 |a Cover; Title Page; Copyright Page; Table of Contents; Foreword; Acknowledgements; List of Symbols; Introduction; Chapter 1. Elementary Concepts of Fracture Mechanics; 1.1. Introduction; 1.2. Superposition principle; 1.3. Modes of crack straining; 1.4. Singular fields at cracking point; 1.4.1. Asymptotic solutions in Mode I; 1.4.2. Asymptotic solutions in Mode II; 1.4.3. Asymptotic solutions in Mode III; 1.4.4. Conclusions; 1.5. Crack propagation criteria; 1.5.1. Local criterion; 1.5.2. Energy criterion; 1.5.2.1. Energy release rate G. 
505 8 |a 1.5.2.2. Relationship between G and stress intensity factors1.5.2.3. How the crack is propagated; 1.5.2.4. Propagation velocity; 1.5.2.5. Direction of crack propagation; Chapter 2. Representation of Fixed and Moving Discontinuities; 2.1. Geometric representation of a crack: a scale problem; 2.1.1. Link between the geometric representation of the crack and the crack model; 2.1.2. Link between the geometric representation of the crack and the numerical method used for crack growth simulation; 2.2. Crack representation by level sets; 2.2.1. Introduction; 2.2.2. Definition of level sets. 
505 8 |a 2.2.3. Level sets discretization2.2.4. Initialization of level sets; 2.3. Simulation of the geometric propagation of a crack; 2.3.1. Some examples of strategies for crack propagation simulation; 2.3.2. Crack propagation modeled by level sets; 2.3.3. Numerical methods dedicated to level set propagation; 2.4. Prospects of the geometric representation of cracks; Chapter 3. Extended Finite Element Method X-FEM; 3.1. Introduction; 3.2. Going back to discretization methods; 3.2.1. Formulation of the problem and notations; 3.2.2. The Rayleigh-Ritz approximation; 3.2.3. Finite element method. 
505 8 |a 3.2.4. Meshless methods. 3.2.5. The partition of unity; 3.3. X-FEM discontinuity modeling; 3.3.1. Introduction, case of a cracked bar; 3.3.1.1. Case a: crack positioned on a node; 3.3.1.2. Case b: crack between two nodes; 3.3.2. Variants; 3.3.3. Extension to two-dimensional and three-dimensional cases; 3.3.4. Level sets within the framework of the eXtended finite element method; 3.4. Technical and mathematical aspects; 3.4.1. Integration; 3.4.2. Conditioning; 3.5. Evaluation of the stress intensity factors; 3.5.1. The Eshelby tensor and the J integral; 3.5.2. Interaction integrals. 
500 |a 4.2.2.2. Role of the T stress. 
520 |a Novel techniques for modeling 3D cracks and their evolution in solids are presented. Cracks are modeled in terms of signed distance functions (level sets). Stress, strain and displacement field are determined using the extended finite elements method (X-FEM). Non-linear constitutive behavior for the crack tip region are developed within this framework to account for non-linear effect in crack propagation. Applications for static or dynamics case are provided. 
504 |a Includes bibliographical references and index. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Fracture mechanics  |x Mathematics. 
650 0 |a Finite element method. 
650 6 |a Mécanique de la rupture  |x Mathématiques. 
650 6 |a Méthode des éléments finis. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Fracture Mechanics.  |2 bisacsh 
650 7 |a Finite element method  |2 fast 
650 7 |a Fracture mechanics  |x Mathematics  |2 fast 
700 1 |a Pommier, Sylvie. 
758 |i has work:  |a Extended Finite Element Method for Crack Propagation (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFGbqkXJT8RCptvJBhrxym  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Pommier, Sylvie.  |t Extended Finite Element Method for Crack Propagation.  |d London : Wiley, ©2013  |z 9781848212091 
830 0 |a ISTE. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1143632  |z Texto completo 
938 |a 123Library  |b 123L  |n 93881 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1143632 
938 |a EBSCOhost  |b EBSC  |n 561463 
938 |a YBP Library Services  |b YANK  |n 10349695 
938 |a YBP Library Services  |b YANK  |n 12676592 
994 |a 92  |b IZTAP