|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_ocn829462280 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
130309s2013 xx ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d IDEBK
|d K6U
|d OCLCF
|d OCLCO
|d OCLCQ
|d OCLCO
|d DEBSZ
|d COO
|d OCLCQ
|d CNNOR
|d UAB
|d MERUC
|d OCLCQ
|d ZCU
|d U3W
|d OCLCQ
|d CEF
|d ICG
|d INT
|d OCLCQ
|d DKC
|d OCLCQ
|d S9I
|d UKAHL
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
020 |
|
|
|a 9781118269756
|
020 |
|
|
|a 1118269756
|
020 |
|
|
|z 9780471690566
|q (hardback)
|
029 |
1 |
|
|a AU@
|b 000055878391
|
029 |
1 |
|
|a DEBBG
|b BV044160730
|
029 |
1 |
|
|a DEBSZ
|b 431081972
|
035 |
|
|
|a (OCoLC)829462280
|
050 |
|
4 |
|a TA1637 .C4776 2012
|
082 |
0 |
4 |
|a 621.3678
|a 621.39/94
|a 621.3994
|
084 |
|
|
|a TEC015000
|2 bisacsh
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Chang, Chein-I.
|
245 |
1 |
0 |
|a Hyperspectral Data Processing :
|b Algorithm Design and Analysis.
|
260 |
|
|
|a Chicester :
|b Wiley,
|c 2013.
|
300 |
|
|
|a 1 online resource (1165 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
|
|a HYPERSPECTRAL DATA PROCESSING: Algorithm Design and Analysis; CONTENTS; PREFACE; 1 OVERVIEWAND INTRODUCTION; 1.1 Overview; 1.2 Issues of Multispectral and Hyperspectral Imageries; 1.3 Divergence of Hyperspectral Imagery from Multispectral Imagery; 1.3.1 Misconception: Hyperspectral Imaging is a Natural Extension of Multispectral Imaging; 1.3.2 Pigeon-Hole Principle: Natural Interpretation of Hyperspectral Imaging; 1.4 Scope of This Book; 1.5 Book's Organization; 1.5.1 Part I: Preliminaries; 1.5.2 Part II: Endmember Extraction; 1.5.3 Part III: Supervised Linear Hyperspectral Mixture Analysis.
|
505 |
8 |
|
|a 1.5.4 Part IV: Unsupervised Hyperspectral Analysis1.5.5 Part V: Hyperspectral Information Compression; 1.5.6 Part VI: Hyperspectral Signal Coding; 1.5.7 Part VII: Hyperspectral Signal Feature Characterization; 1.5.8 Applications; 1.5.8.1 Chapter 30: Applications of Target Detection; 1.5.8.2 Chapter 31: Nonlinear Dimensionality Expansion to Multispectral Imagery; 1.5.8.3 Chapter 32: Multispectral Magnetic Resonance Imaging; 1.6 Laboratory Data to be Used in This Book; 1.6.1 Laboratory Data; 1.6.2 Cuprite Data; 1.6.3 NIST/EPA Gas-Phase Infrared Database.
|
505 |
8 |
|
|a 1.7 Real Hyperspectral Images to be Used in this Book1.7.1 AVIRIS Data; 1.7.1.1 Cuprite Data; 1.7.1.2 Purdue's Indiana Indian Pine Test Site; 1.7.2 HYDICE Data; 1.8 Notations and Terminologies to be Used in this Book; I: PRELIMINARIES; 2 FUNDAMENTALS OF SUBSAMPLE AND MIXED SAMPLE ANALYSES; 2.1 Introduction; 2.2 Subsample Analysis; 2.2.1 Pure-Sample Target Detection; 2.2.2 Subsample Target Detection; 2.2.2.1 Adaptive Matched Detector (AMD); 2.2.2.2 Adaptive Subspace Detector (ASD); 2.2.3 Subsample Target Detection: Constrained Energy Minimization (CEM); 2.3 Mixed Sample Analysis.
|
505 |
8 |
|
|a 2.3.1 Classification with Hard Decisions2.3.1.1 Fisher's Linear Discriminant Analysis (FLDA); 2.3.1.2 Support Vector Machines (SVM); 2.3.2 Classification with Soft Decisions; 2.3.2.1 Orthogonal Subspace Projection (OSP); 2.3.2.2 Target-Constrained Interference-Minimized Filter (TCIMF); 2.4 Kernel-Based Classification; 2.4.1 Kernel Trick Used in Kernel-Based Methods; 2.4.2 Kernel-Based Fisher's Linear Discriminant Analysis (KFLDA); 2.4.3 Kernel Support Vector Machine (K-SVM); 2.5 Conclusions; 3 THREE-DIMENSIONAL RECEIVER OPERATING CHARACTERISTICS (3D ROC) ANALYSIS; 3.1 Introduction.
|
505 |
8 |
|
|a 3.2 Neyman-Pearson Detection Problem Formulation3.3 ROC Analysis; 3.4 3D ROC Analysis; 3.5 Real Data-Based ROC Analysis; 3.5.1 How to Generate ROC Curves from Real Data; 3.5.2 How to Generate Gaussian-Fitted ROC Curves; 3.5.3 How to Generate 3D ROC Curves; 3.5.4 How to Generate 3D ROC Curves for Multiple Signal Detection and Classification; 3.6 Examples; 3.6.1 Hyperspectral Imaging; 3.6.1.1 Hyperspectral Target Detection; 3.6.1.2 Linear Hyperspectral Mixture Analysis; 3.6.2 Magnetic Resonance (MR) Breast Imaging; 3.6.2.1 Breast Tumor Detection; 3.6.2.2 Brain Tissue Classification.
|
500 |
|
|
|a 3.6.3 Chemical/Biological Agent Detection.
|
520 |
|
|
|a Hyperspectral Data Processing: Algorithm Design and Analysis is a culmination of the research conducted in the Remote Sensing Signal and Image Processing Laboratory (RSSIPL) at the University of Maryland, Baltimore County. Specifically, it treats hyperspectral image processing and hyperspectral signal processing as separate subjects in two different categories. Most materials covered in this book can be used in conjunction with the author's first book, Hyperspectral Imaging: Techniques for Spectral Detection and Classification, without much overlap. Many results in this.
|
588 |
0 |
|
|a Print version record.
|
504 |
|
|
|a Includes bibliographical references and index.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Image processing
|x Digital techniques.
|
650 |
|
0 |
|a Spectroscopic imaging.
|
650 |
|
0 |
|a Signal processing.
|
650 |
|
6 |
|a Traitement d'images
|x Techniques numériques.
|
650 |
|
6 |
|a Imagerie spectroscopique.
|
650 |
|
6 |
|a Traitement du signal.
|
650 |
|
7 |
|a digital imaging.
|2 aat
|
650 |
|
7 |
|a Image processing
|x Digital techniques
|2 fast
|
650 |
|
7 |
|a Signal processing
|2 fast
|
650 |
|
7 |
|a Spectroscopic imaging
|2 fast
|
758 |
|
|
|i has work:
|a Hyperspectral data processing (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFYr3Wpbt9YbxMbgbmx8kC
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Chang, Chein-I.
|t Hyperspectral Data Processing : Algorithm Design and Analysis.
|d Chicester : Wiley, ©2013
|z 9780471690566
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=832589
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH21631021
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL832589
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis24878964
|
994 |
|
|
|a 92
|b IZTAP
|