|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_ocn829459852 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
130309s2013 enk ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d YDXCP
|d UMI
|d DEBBG
|d DEBSZ
|d OCLCO
|d OCLCQ
|d OCLCO
|d COO
|d OCLCF
|d N$T
|d IDEBK
|d E7B
|d NLGGC
|d VT2
|d AUD
|d CDX
|d CAMBR
|d OCLCQ
|d NJR
|d OCLCQ
|d UUM
|d CEF
|d OTZ
|d OCLCQ
|d WYU
|d OL$
|d OCLCQ
|d UHL
|d OCLCQ
|d LUN
|d UKAHL
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d INARC
|d OCLCL
|
019 |
|
|
|a 828423681
|a 835235850
|a 841033876
|a 848668498
|a 862975695
|a 1167643280
|a 1264931934
|
020 |
|
|
|a 9781107334571
|
020 |
|
|
|a 1107334578
|
020 |
|
|
|a 0521763401
|
020 |
|
|
|a 9780521763400
|
020 |
|
|
|a 9781107326477
|
020 |
|
|
|a 1107326478
|
020 |
|
|
|a 9781107336230
|q (electronic bk.)
|
020 |
|
|
|a 1107336236
|q (electronic bk.)
|
020 |
|
|
|a 9781299257429
|q (MyiLibrary)
|
020 |
|
|
|a 1299257429
|q (MyiLibrary)
|
020 |
|
|
|a 9781139019460
|q (electronic bk.)
|
020 |
|
|
|a 1139019465
|q (electronic bk.)
|
020 |
|
|
|a 9781107332911
|
020 |
|
|
|a 1107332915
|
020 |
|
|
|z 9780521763400
|
029 |
1 |
|
|a AU@
|b 000052282071
|
029 |
1 |
|
|a AU@
|b 000052915061
|
029 |
1 |
|
|a DEBBG
|b BV041776547
|
029 |
1 |
|
|a DEBSZ
|b 380122596
|
029 |
1 |
|
|a DEBSZ
|b 404319904
|
035 |
|
|
|a (OCoLC)829459852
|z (OCoLC)828423681
|z (OCoLC)835235850
|z (OCoLC)841033876
|z (OCoLC)848668498
|z (OCoLC)862975695
|z (OCoLC)1167643280
|z (OCoLC)1264931934
|
037 |
|
|
|a CL0500000333
|b Safari Books Online
|
050 |
|
4 |
|a QC20.7.S8 M39 2012
|
072 |
|
7 |
|a MAT
|x 029000
|2 bisacsh
|
072 |
|
7 |
|a SCI
|2 eflch
|
082 |
0 |
4 |
|a 519.2
|a 530.15192
|
084 |
|
|
|a BUS061000
|2 bisacsh
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a McCauley, Joseph L.
|
245 |
1 |
0 |
|a Stochastic Calculus and Differential Equations for Physics and Finance.
|
260 |
|
|
|a Cambridge :
|b Cambridge University Press,
|c 2013.
|
300 |
|
|
|a 1 online resource (220 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Abbreviations; Introduction; 1 Random variables and probability distributions; 1.1 Particle descriptions of partial differential equations; 1.2 Random variables and stochastic processes; 1.3 The n-point probability distributions; 1.4 Simple averages and scaling; 1.5 Pair correlations and 2-point densities; 1.6 Conditional probability densities; 1.7 Statistical ensembles and time series; 1.8 When are pair correlations enough to identify a stochastic process?; Additional reading; Exercises; 2 Martingales, Markov, and nonstationarity; 2.1 Statistically independent increments.
|
505 |
8 |
|
|a 2.2 Stationary increments2.3 Martingales; 2.4 Nonstationary increment processes; 2.5 Markov processes; 2.6 Drift plus noise; 2.7 Gaussian processes; 2.8 Stationary vs. nonstationary processes; Additional reading; Exercises; 3 Stochastic calculus; 3.1 The Wiener process; 3.2 Ito's theorem; 3.3 Ito's lemma; 3.4 Martingales for greenhorns; 3.5 First-passage times; Additional reading; Exercises; 4 Ito processes and Fokker-Planck equations; 4.1 Stochastic differential equations; 4.2 Ito's lemma; 4.3 The Fokker-Planck pde; 4.4 The Chapman-Kolmogorov equation; 4.5 Calculating averages.
|
505 |
8 |
|
|a 4.6 Statistical equilibrium4.7 An ergodic stationary process; 4.8 Early models in statistical physics and finance; 4.9 Nonstationary increments revisited; Additional reading; Exercises; 5 Selfsimilar Ito processes; 5.1 Selfsimilar stochastic processes; 5.2 Scaling in diffusion; 5.3 Superficially nonlinear diffusion; 5.4 Is there an approach to scaling?; 5.5 Multiaffine scaling; Additional reading; Exercises; 6 Fractional Brownian motion; 6.1 Introduction; 6.2 Fractional Brownian motion; 6.3 The distribution of fractional Brownian motion; 6.4 Infinite memory processes.
|
505 |
8 |
|
|a 6.5 The minimal description of dynamics6.6 Pair correlations cannot scale; 6.7 Semimartingales; Additional reading; Exercises; 7 Kolmogorov's pdes and Chapman-Kolmogorov; 7.1 The meaning of Kolmogorov's first pde; 7.2 An example of backward-time diffusion; 7.3 Deriving the Chapman-Kolmogorov equation for an Ito process; Additional reading; Exercise; 8 Non-Markov Ito processes; 8.1 Finite memory Ito processes?; 8.2 A Gaussian Ito process with 1-state memory; 8.3 McKean's examples; 8.4 The Chapman-Kolmogorov equation; 8.5 Interacting system with a phase transition.
|
505 |
8 |
|
|a 8.6 The meaning of the Chapman-Kolmogorov equationAdditional reading; Exercise; 9 Black-Scholes, martingales, and Feynman-Kac; 9.1 Local approximation to sdes; 9.2 Transition densities via path integrals; 9.3 Black-Scholes-type pdes; Additional reading; Exercise; 10 Stochastic calculus with martingales; 10.1 Introduction; 10.2 Integration by parts; 10.3 An exponential martingale; 10.4 Girsanov's theorem; 10.5 An application of Girsanov's theorem; 10.6 Topological inequivalence of martingales with Wiener processes; 10.7 Solving diffusive pdes by running an Ito process; 10.8 First-passage times.
|
500 |
|
|
|a 10.9 Martingales generally seen.
|
520 |
|
|
|a Provides graduate students and practitioners in physics and economics with a better understanding of stochastic processes.
|
504 |
|
|
|a Includes bibliographical references and index.
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Stochastic processes.
|
650 |
|
0 |
|a Differential equations.
|
650 |
|
0 |
|a Statistical physics.
|
650 |
|
0 |
|a Finance
|x Mathematical models.
|
650 |
|
2 |
|a Stochastic Processes
|
650 |
|
6 |
|a Processus stochastiques.
|
650 |
|
6 |
|a Équations différentielles.
|
650 |
|
6 |
|a Physique statistique.
|
650 |
|
6 |
|a Finances
|x Modèles mathématiques.
|
650 |
|
7 |
|a BUSINESS & ECONOMICS
|x Statistics.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Probability & Statistics
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Differential equations
|2 fast
|
650 |
|
7 |
|a Finance
|x Mathematical models
|2 fast
|
650 |
|
7 |
|a Statistical physics
|2 fast
|
650 |
|
7 |
|a Stochastic processes
|2 fast
|
758 |
|
|
|i has work:
|a Stochastic Calculus and Differential Equations for Physics and Finance (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFvPDjXCmFFpQxvPWBWQRq
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a McCauley, Joseph L.
|t Stochastic Calculus and Differential Equations for Physics and Finance.
|d Cambridge : Cambridge University Press, ©2013
|z 9780521763400
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1139554
|z Texto completo
|
938 |
|
|
|a Internet Archive
|b INAR
|n stochasticcalcul0000mcca
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH24994072
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37561879
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 23054820
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1139554
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10659339
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 539283
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis24881840
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10197987
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10256765
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10249352
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10350416
|
994 |
|
|
|a 92
|b IZTAP
|