Cargando…

Stochastic Calculus and Differential Equations for Physics and Finance.

Provides graduate students and practitioners in physics and economics with a better understanding of stochastic processes.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: McCauley, Joseph L.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2013.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn829459852
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 130309s2013 enk ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDXCP  |d UMI  |d DEBBG  |d DEBSZ  |d OCLCO  |d OCLCQ  |d OCLCO  |d COO  |d OCLCF  |d N$T  |d IDEBK  |d E7B  |d NLGGC  |d VT2  |d AUD  |d CDX  |d CAMBR  |d OCLCQ  |d NJR  |d OCLCQ  |d UUM  |d CEF  |d OTZ  |d OCLCQ  |d WYU  |d OL$  |d OCLCQ  |d UHL  |d OCLCQ  |d LUN  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d INARC  |d OCLCL 
019 |a 828423681  |a 835235850  |a 841033876  |a 848668498  |a 862975695  |a 1167643280  |a 1264931934 
020 |a 9781107334571 
020 |a 1107334578 
020 |a 0521763401 
020 |a 9780521763400 
020 |a 9781107326477 
020 |a 1107326478 
020 |a 9781107336230  |q (electronic bk.) 
020 |a 1107336236  |q (electronic bk.) 
020 |a 9781299257429  |q (MyiLibrary) 
020 |a 1299257429  |q (MyiLibrary) 
020 |a 9781139019460  |q (electronic bk.) 
020 |a 1139019465  |q (electronic bk.) 
020 |a 9781107332911 
020 |a 1107332915 
020 |z 9780521763400 
029 1 |a AU@  |b 000052282071 
029 1 |a AU@  |b 000052915061 
029 1 |a DEBBG  |b BV041776547 
029 1 |a DEBSZ  |b 380122596 
029 1 |a DEBSZ  |b 404319904 
035 |a (OCoLC)829459852  |z (OCoLC)828423681  |z (OCoLC)835235850  |z (OCoLC)841033876  |z (OCoLC)848668498  |z (OCoLC)862975695  |z (OCoLC)1167643280  |z (OCoLC)1264931934 
037 |a CL0500000333  |b Safari Books Online 
050 4 |a QC20.7.S8 M39 2012 
072 7 |a MAT  |x 029000  |2 bisacsh 
072 7 |a SCI  |2 eflch 
082 0 4 |a 519.2  |a 530.15192 
084 |a BUS061000  |2 bisacsh 
049 |a UAMI 
100 1 |a McCauley, Joseph L. 
245 1 0 |a Stochastic Calculus and Differential Equations for Physics and Finance. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2013. 
300 |a 1 online resource (220 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Abbreviations; Introduction; 1 Random variables and probability distributions; 1.1 Particle descriptions of partial differential equations; 1.2 Random variables and stochastic processes; 1.3 The n-point probability distributions; 1.4 Simple averages and scaling; 1.5 Pair correlations and 2-point densities; 1.6 Conditional probability densities; 1.7 Statistical ensembles and time series; 1.8 When are pair correlations enough to identify a stochastic process?; Additional reading; Exercises; 2 Martingales, Markov, and nonstationarity; 2.1 Statistically independent increments. 
505 8 |a 2.2 Stationary increments2.3 Martingales; 2.4 Nonstationary increment processes; 2.5 Markov processes; 2.6 Drift plus noise; 2.7 Gaussian processes; 2.8 Stationary vs. nonstationary processes; Additional reading; Exercises; 3 Stochastic calculus; 3.1 The Wiener process; 3.2 Ito's theorem; 3.3 Ito's lemma; 3.4 Martingales for greenhorns; 3.5 First-passage times; Additional reading; Exercises; 4 Ito processes and Fokker-Planck equations; 4.1 Stochastic differential equations; 4.2 Ito's lemma; 4.3 The Fokker-Planck pde; 4.4 The Chapman-Kolmogorov equation; 4.5 Calculating averages. 
505 8 |a 4.6 Statistical equilibrium4.7 An ergodic stationary process; 4.8 Early models in statistical physics and finance; 4.9 Nonstationary increments revisited; Additional reading; Exercises; 5 Selfsimilar Ito processes; 5.1 Selfsimilar stochastic processes; 5.2 Scaling in diffusion; 5.3 Superficially nonlinear diffusion; 5.4 Is there an approach to scaling?; 5.5 Multiaffine scaling; Additional reading; Exercises; 6 Fractional Brownian motion; 6.1 Introduction; 6.2 Fractional Brownian motion; 6.3 The distribution of fractional Brownian motion; 6.4 Infinite memory processes. 
505 8 |a 6.5 The minimal description of dynamics6.6 Pair correlations cannot scale; 6.7 Semimartingales; Additional reading; Exercises; 7 Kolmogorov's pdes and Chapman-Kolmogorov; 7.1 The meaning of Kolmogorov's first pde; 7.2 An example of backward-time diffusion; 7.3 Deriving the Chapman-Kolmogorov equation for an Ito process; Additional reading; Exercise; 8 Non-Markov Ito processes; 8.1 Finite memory Ito processes?; 8.2 A Gaussian Ito process with 1-state memory; 8.3 McKean's examples; 8.4 The Chapman-Kolmogorov equation; 8.5 Interacting system with a phase transition. 
505 8 |a 8.6 The meaning of the Chapman-Kolmogorov equationAdditional reading; Exercise; 9 Black-Scholes, martingales, and Feynman-Kac; 9.1 Local approximation to sdes; 9.2 Transition densities via path integrals; 9.3 Black-Scholes-type pdes; Additional reading; Exercise; 10 Stochastic calculus with martingales; 10.1 Introduction; 10.2 Integration by parts; 10.3 An exponential martingale; 10.4 Girsanov's theorem; 10.5 An application of Girsanov's theorem; 10.6 Topological inequivalence of martingales with Wiener processes; 10.7 Solving diffusive pdes by running an Ito process; 10.8 First-passage times. 
500 |a 10.9 Martingales generally seen. 
520 |a Provides graduate students and practitioners in physics and economics with a better understanding of stochastic processes. 
504 |a Includes bibliographical references and index. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Stochastic processes. 
650 0 |a Differential equations. 
650 0 |a Statistical physics. 
650 0 |a Finance  |x Mathematical models. 
650 2 |a Stochastic Processes 
650 6 |a Processus stochastiques. 
650 6 |a Équations différentielles. 
650 6 |a Physique statistique. 
650 6 |a Finances  |x Modèles mathématiques. 
650 7 |a BUSINESS & ECONOMICS  |x Statistics.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Differential equations  |2 fast 
650 7 |a Finance  |x Mathematical models  |2 fast 
650 7 |a Statistical physics  |2 fast 
650 7 |a Stochastic processes  |2 fast 
758 |i has work:  |a Stochastic Calculus and Differential Equations for Physics and Finance (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFvPDjXCmFFpQxvPWBWQRq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a McCauley, Joseph L.  |t Stochastic Calculus and Differential Equations for Physics and Finance.  |d Cambridge : Cambridge University Press, ©2013  |z 9780521763400 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1139554  |z Texto completo 
938 |a Internet Archive  |b INAR  |n stochasticcalcul0000mcca 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24994072 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37561879 
938 |a Coutts Information Services  |b COUT  |n 23054820 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1139554 
938 |a ebrary  |b EBRY  |n ebr10659339 
938 |a EBSCOhost  |b EBSC  |n 539283 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis24881840 
938 |a YBP Library Services  |b YANK  |n 10197987 
938 |a YBP Library Services  |b YANK  |n 10256765 
938 |a YBP Library Services  |b YANK  |n 10249352 
938 |a YBP Library Services  |b YANK  |n 10350416 
994 |a 92  |b IZTAP