Cargando…

AC electric motors control : advanced design techniques and applications /

The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Giri, Fouad (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chichester, West Sussex, United Kingdom : John Wiley & Sons Inc., [2013]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn828724589
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 130227s2013 enk ob 001 0 eng
010 |a  2013008032 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d DG1  |d IDEBK  |d N$T  |d CUS  |d E7B  |d CDX  |d CCO  |d OCLCF  |d COO  |d B24X7  |d RECBK  |d YDXCP  |d EBLCP  |d DEBSZ  |d DEBBG  |d MOR  |d LIP  |d PIFAG  |d VGM  |d MERUC  |d OCLCQ  |d K6U  |d ZCU  |d U3W  |d COCUF  |d OCLCQ  |d STF  |d WRM  |d NRAMU  |d ICG  |d INT  |d VT2  |d AU@  |d OCLCQ  |d WYU  |d OCLCQ  |d A6Q  |d DKC  |d CNNOR  |d OCLCQ  |d UKAHL  |d OCLCQ  |d S9I  |d C6I  |d OCLCQ  |d EYM  |d OCLCO  |d OCLCQ  |d OCLCO 
066 |c (S 
019 |a 836404281  |a 961654130  |a 962648169  |a 988431720  |a 991962983  |a 1018025810  |a 1023012106  |a 1037745048  |a 1038700036  |a 1044948913  |a 1045468224  |a 1053528641  |a 1058828118  |a 1081103494  |a 1083556717  |a 1091780130  |a 1097164219  |a 1100559818  |a 1105792782 
020 |a 9781118574249  |q (ePub) 
020 |a 1118574249  |q (ePub) 
020 |a 9781118574256  |q (MobiPocket) 
020 |a 1118574257  |q (MobiPocket) 
020 |a 9781118574270  |q (Adobe PDF) 
020 |a 1118574273  |q (Adobe PDF) 
020 |a 9781118574263 
020 |a 1118574265 
020 |a 1118331524 
020 |a 9781118331521 
020 |a 9781299465152 
020 |a 1299465153 
020 |z 9781118331521  |q (hardback) 
029 1 |a AU@  |b 000050597388 
029 1 |a CHBIS  |b 010026900 
029 1 |a CHNEW  |b 000941360 
029 1 |a CHVBK  |b 480216355 
029 1 |a DEBBG  |b BV041907322 
029 1 |a DEBBG  |b BV043395525 
029 1 |a DEBBG  |b BV044050152 
029 1 |a DEBSZ  |b 431372950 
029 1 |a DEBSZ  |b 485033321 
029 1 |a NZ1  |b 15142923 
029 1 |a NZ1  |b 15341676 
029 1 |a NZ1  |b 15905499 
035 |a (OCoLC)828724589  |z (OCoLC)836404281  |z (OCoLC)961654130  |z (OCoLC)962648169  |z (OCoLC)988431720  |z (OCoLC)991962983  |z (OCoLC)1018025810  |z (OCoLC)1023012106  |z (OCoLC)1037745048  |z (OCoLC)1038700036  |z (OCoLC)1044948913  |z (OCoLC)1045468224  |z (OCoLC)1053528641  |z (OCoLC)1058828118  |z (OCoLC)1081103494  |z (OCoLC)1083556717  |z (OCoLC)1091780130  |z (OCoLC)1097164219  |z (OCoLC)1100559818  |z (OCoLC)1105792782 
042 |a pcc 
050 0 0 |a TK2781 
072 7 |a TEC  |x 009070  |2 bisacsh 
082 0 0 |a 621.46  |2 23 
084 |a SCI064000  |2 bisacsh 
049 |a UAMI 
245 0 0 |a AC electric motors control :  |b advanced design techniques and applications /  |c [compiled by] Fouad Giri. 
264 1 |a Chichester, West Sussex, United Kingdom :  |b John Wiley & Sons Inc.,  |c [2013] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record and CIP data provided by publisher. 
505 0 |6 880-01  |a pt. 1. Control models for AC motors -- pt. 2. Observer design techniques for AC motors -- pt. 3. Control design techniques for induction motors -- pt. 4. Control design techniques for synchronous motors -- pt. 5. Industrial applications of AC motors control. 
520 |a The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors. Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state var. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Electric motors, Alternating current  |x Automatic control. 
650 6 |a Moteurs à courant alternatif  |x Commande automatique. 
650 7 |a SCIENCE  |x System Theory.  |2 bisacsh 
650 7 |a Electric motors, Alternating current  |x Automatic control  |2 fast 
700 1 |a Giri, Fouad,  |e editor. 
776 0 8 |i Print version:  |t AC electric motors control.  |d Chichester, West Sussex, United Kingdom : John Wiley & Sons Inc., [2013]  |z 9781118331521  |w (DLC) 2012050753 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1161324  |z Texto completo 
880 0 0 |6 505-00/(S  |g Machine generated contents note:  |g 1.  |t Introduction to AC Motor Control /  |r Fouad Giri --  |g 1.1.  |t AC Motor Features --  |g 1.2.  |t Control Issues --  |g 1.2.1.  |t State-Feedback Speed Control --  |g 1.2.2.  |t Adaptive Output-Feedback Speed Control --  |g 1.2.3.  |t Fault Detection and Isolation, Fault-Tolerant Control --  |g 1.2.4.  |t Speed Control with Optimized Flux --  |g 1.2.5.  |t Power Factor Correction --  |g 1.3.  |t Book Overview --  |g 1.3.1.  |t Control Models for AC Motors --  |g 1.3.2.  |t Observer Design Techniques for AC Motors --  |g 1.3.3.  |t Control Design Techniques for Induction Motors --  |g 1.3.4.  |t Control Design Techniques for Synchronous Motors --  |g 1.3.5.  |t Industrial Applications of AC Motors Control --  |t References --  |g pt. One  |t Control Models for AC Motors --  |g 2.  |t Control Models for Induction Motors /  |r Abdelmounime El Magri --  |g 2.1.  |t Introduction --  |g 2.2.  |t Induction Motors---A Concise Description --  |g 2.3.  |t Triphase Induction Motor Modeling --  |g 2.3.1.  |t Modeling Assumptions --  |g 2.3.2.  |t Triphase Induction Motor Modeling --  |g 2.3.3.  |t Park Transformations --  |g 2.3.4.  |t Two-Phase Models of Induction Motors --  |g 2.3.5.  |t Doubly-Fed Induction Motor Model --  |g 2.4.  |t Identification of Induction Motor Parameters --  |g 2.4.1.  |t Identification of Mechanical Parameters --  |g 2.4.2.  |t Identification of Electrical Parameters --  |g 2.5.  |t Conclusions --  |t References --  |g 3.  |t Control Models for Synchronous Machines /  |r Abderrahim El Fadili --  |g 3.1.  |t Introduction --  |g 3.2.  |t Synchronous Machine Structures --  |g 3.3.  |t Preliminaries --  |g 3.3.1.  |t Modeling Assumptions --  |g 3.3.2.  |t Three-Phase to Bi-Phase Transformations --  |g 3.3.3.  |t Concordia-Park Transformation (αβ to dq) --  |g 3.4.  |t Dynamic Modeling of Wound-Rotor Synchronous Motors --  |g 3.4.1.  |t Oriented dq-Frame Model of Salient Pole WRSM --  |g 3.5.  |t Permanent-Magnet Synchronous Machine Modeling --  |g 3.5.1.  |t PMSM Modeling in abc-Coordinates --  |g 3.5.2.  |t PMSM Model in the Rotating dq-Frame --  |g 3.5.3.  |t PMSM Model in the Fixed Bi-Phase αβ-Frame --  |g 3.6.  |t Conclusions --  |t References --  |g pt. Two  |t Observer Design Techniques for AC Motors --  |g 4.  |t State Observers for Estimation Problems in Induction Motors /  |r Alexandru Ticlea --  |g 4.1.  |t Introduction --  |g 4.2.  |t Motor Representation and Estimation Issues --  |g 4.2.1.  |t Problem Statement --  |g 4.2.2.  |t Short Literature Review --  |g 4.3.  |t Some Observer Approaches --  |g 4.3.1.  |t Estimation under known and constant speed and Parameters --  |g 4.3.2.  |t Estimation under known Speed and Parameters --  |g 4.3.3.  |t Estimation under unknown Speed and known Parameters --  |g 4.3.4.  |t Estimation in the presence of unknown Speed and/or Parameters --  |g 4.4.  |t Some Illustration Results --  |g 4.4.1.  |t State and Parameter Estimation under known Speed --  |g 4.4.2.  |t State and Speed Estimation under known Parameters --  |g 4.4.3.  |t State, Parameter, and Speed Estimation --  |g 4.4.4.  |t Estimation close to Unobservability --  |g 4.5.  |t Conclusions --  |t References --  |g 5.  |t State Observers for Active Disturbance Rejection in Induction Motor Control /  |r Alberto Luviano-Juarez --  |g 5.1.  |t Introduction --  |g 5.2.  |t Two-Stage ADR Controller Design for the Induction Motor --  |g 5.2.1.  |t Flux Simulator --  |g 5.2.2.  |t Formulation of the Problem and Background Results --  |g 5.2.3.  |t Assumptions --  |g 5.2.4.  |t Problem Formulation --  |g 5.2.5.  |t Control Strategy --  |g 5.2.6.  |t Experimental Results --  |g 5.3.  |t Field-Oriented ADR Armature Voltage Control --  |g 5.3.1.  |t Control Decoupling Property of the Induction Motor System --  |g 5.3.2.  |t Problem Formulation --  |g 5.3.3.  |t Control Strategy --  |g 5.3.4.  |t Experimental Results --  |g 5.A.  |t Appendix --  |g 5.A.1.  |t Generalities on Ultra-Models and Observer-Based Active Disturbance Rejection Control --  |g 5.A.2.  |t Assumptions --  |g 5.A.3.  |t Observing the uncertain System through the Ultra-Model --  |g 5.A.4.  |t Observer-Based Active Disturbance Rejection Controller --  |t References --  |g 6.  |t Observers Design for Systems with Sampled Measurements, Application to AC Motors /  |r Tarek Ahmed-Ali --  |g 6.1.  |t Introduction --  |g 6.2.  |t Nomenclature --  |g 6.3.  |t Observer Design --  |g 6.3.1.  |t Nonlinear System Model --  |g 6.3.2.  |t Observer Design with a Time-Delay Approach --  |g 6.3.3.  |t Observer Design with an Output Predictor --  |g 6.4.  |t Application to the AC Motor --  |g 6.4.1.  |t Model of the AC Motor --  |g 6.4.2.  |t Observer for AC Machine with Sampled and Held Measurements --  |g 6.4.3.  |t Observer for the AC Machine with Predictor --  |g 6.4.4.  |t Simulation --  |g 6.5.  |t Conclusions --  |t References --  |g 7.  |t Experimental Evaluation of Observer Design Technique for Synchronous Motor /  |r Xuefang Lin Shi --  |g 7.1.  |t Introduction --  |g 7.1.1.  |t Problem Statement --  |g 7.1.2.  |t State of the Art and Objectives --  |g 7.2.  |t SPMSM Modeling and its Observability --  |g 7.2.1.  |t SPMSM Model --  |g 7.2.2.  |t Quick Review on the Observability of SPMSM --  |g 7.3.  |t Robust MRAS Observer --  |g 7.3.1.  |t Reference Model --  |g 7.3.2.  |t Adjustable Model --  |g 7.3.3.  |t Adaptation Mechanism --  |g 7.3.4.  |t Rotor Position Observer --  |g 7.4.  |t Experimental Results --  |g 7.4.1.  |t Nominal Conditions --  |g 7.4.2.  |t Parameter Variation Effect --  |g 7.4.3.  |t Load Torque Effect --  |g 7.5.  |t Conclusions --  |t References --  |g pt. Three  |t Control Design Techniques for Induction Motors --  |g 8.  |t High-Gain Observers in Robust Feedback Control of Induction Motors /  |r Elias G. Strangas --  |g 8.1.  |t Chapter Overview --  |g 8.2.  |t Field Orientation --  |g 8.3.  |t High-Gain Observers --  |g 8.4.  |t Speed and Acceleration Estimation using High-Gain Observers --  |g 8.4.1.  |t Speed Estimation using a Mechanical Sensor --  |g 8.4.2.  |t Speed and Acceleration Estimation using a Mechanical Sensor --  |g 8.4.3.  |t Speed Estimation without a Mechanical Sensor --  |g 8.5.  |t Flux Control --  |g 8.6.  |t Speed Control with Mechanical Sensor --  |g 8.7.  |t Speed Control without Mechanical Sensor --  |g 8.8.  |t Simulation and Experimental Results --  |g 8.9.  |t Conclusions --  |t References --  |g 9.  |t Adaptive Output Feedback Control of Induction Motors /  |r Cristiano Maria Verrelli --  |g 9.1.  |t Introduction --  |g 9.2.  |t Problem Statement --  |g 9.3.  |t Nonlinear Estimation and Tracking Control for Sensorless Induction Motors --  |g 9.3.1.  |t Estimation and Tracking Control Algorithm --  |g 9.3.2.  |t Stability Analysis --  |g 9.4.  |t Nonlinear Estimation and Tracking Control for the Output Feedback Case --  |g 9.4.1.  |t Estimation and Tracking Control Algorithm --  |g 9.4.2.  |t Stability Proof --  |g 9.5.  |t Simulation Results --  |g 9.5.1.  |t Sensorless Case --  |g 9.5.2.  |t Output Feedback Case --  |g 9.6.  |t Conclusions --  |t References --  |g 10.  |t Nonlinear Control for Speed Regulation of Induction Motor with Optimal Energetic Efficiency /  |r Fouad Giri --  |g 10.1.  |t Introduction --  |g 10.2.  |t Induction Motor Modeling with Saturation Effect Inclusion --  |g 10.3.  |t Controller Design --  |g 10.3.1.  |t Control Objective --  |g 10.3.2.  |t Rotor Flux Reference Optimization --  |g 10.3.3.  |t Speed and Flux Control Design and Analysis --  |g 10.4.  |t Simulation --  |g 10.5.  |t Conclusions --  |t References --  |g 11.  |t Experimental Evaluation of Nonlinear Control Design Techniques for Sensorless Induction Motor /  |r Robert Boisliveau --  |g 11.1.  |t Introduction --  |g 11.2.  |t Problem Formulation --  |g 11.2.1.  |t Control and Observation Problem --  |g 11.3.  |t Robust Integral Backstepping --  |g 11.3.1.  |t Controller Design using an Integral Backstepping Method --  |g 11.4.  |t High-Order Sliding-Mode Control --  |g 11.4.1.  |t Switching Vector --  |g 11.4.2.  |t Discontinuous Input --  |g 11.5.  |t Adaptive Interconnected Observers Design --  |g 11.6.  |t Experimental Results --  |g 11.6.1.  |t Integral Backstepping Control and Adaptive Observer --  |g 11.6.2.  |t High-Order Sliding-Mode Control and Adaptive Observer --  |g 11.7.  |t Robust Nonlinear Controllers Comparison --  |g 11.7.1.  |t High-Order Sliding-Mode Control --  |g 11.7.2.  |t Integral Backstepping Control --  |g 11.7.3.  |t Experimental Results: Comparison --  |g 11.8.  |t Conclusions --  |t References --  |g 12.  |t Multiphase Induction Motor Control /  |r Giovanni Azzone --  |g 12.1.  |t Introduction --  |g 12.2.  |t Power-Oriented Graphs --  |g 12.2.1.  |t Notations --  |g 12.3.  |t Multiphase Induction Motor Complex Dynamic Modeling --  |g 12.3.1.  |t Hypothesis for the Induction Motor Modeling --  |g 12.3.2.  |t Complex Dynamic Modeling of the Induction Motor --  |g 12.4.  |t Multiphase Indirect Field-Oriented Control with Harmonic Injection --  |g 12.4.1.  |t Five-Phase Indirect Rotor Field-Oriented Control --  |g 12.4.2.  |t Five-Phase IRFOC Simulation Results --  |g 12.5.  |t Conclusions --  |t References --  |g 13.  |t Backstepping Controller for DFIM with Bidirectional AC/DC/AC Converter /  |r Fouad Giri --  |g 13.1.  |t Introduction --  |g 13.2.  |t Modeling "AC/DC/AC Converter---Doubly-Fed Induction Motor" Association --  |g 13.2.1.  |t Doubly-Fed Induction Motor Model --  |g 13.2.2.  |t Modeling of the System "DC/AC  
880 0 0 |t Inverter-DFIM" --  |g 13.2.3.  |t AC/DC Rectifier Modeling --  |g 13.3.  |t Controller Design --  |g 13.3.1.  |t Control Objectives --  |g 13.3.2.  |t Motor Speed and Stator Flux Norm Regulation --  |g 13.3.3.  |t Power Factor Correction and DC Voltage Controller --  |g 13.4.  |t Simulation Results --  |g 13.5.  |t Conclusions --  |t References --  |g 14.  |t Fault Detection in Induction Motors /  |r Manuel Pineda-Sanchez --  |g 14.1.  |t Introduction --  |g 14.2.  |t Description and Classification of IMs Faults --  |g 14.2.1.  |t Electrical Faults --  |g 14.2.2.  |t Mechanical Faults --  |g 14.3.  |t Model-Based FDI in IMs --  |g 14.3.1.  |t Introduction --  |g 14.3.2.  |t Modeling of IMs with Faults --  |g 14.3.3.  |t Fault Detection Observer Design for IMs --  |g 14.3.4.  |t Residual Generation and Evaluation --  |g 14.3.5.  |t Experimental Results --  |g 14.4.  |t Classical MCSA Based on the Fast Fourier Transform --  |g 14.5.  |t Hilbert Transform --  |g 14.5.1.  |t Bases of the Application of the Hilbert Transform of a Phase Current to the Diagnosis of Electrical Machines --  |g 14.5.2.  |t Experimental Results --  |g 14.6.  |t Discrete Wavelet Transform Approach --  |g 14.6.1.  |t Basis for the Application of the DWT to Diagnostic of Electrical Machines --  |g 14.6.2.  |t Application of the DWT to the Analysis of the Start-up Current of a Healthy Motor. 
880 0 0 |6 505-01/(S  |g Contents note continued:  |g 14.6.3.  |t Application of the DWT to the Analysis of the Start-up Current of a Motor with a Broken Bar in the Rotor --  |g 14.6.4.  |t Diagnosis of a Machine with Mixed Eccentricity through the Start-up Current --  |g 14.7.  |t Continuous Wavelet Transform Approach --  |g 14.7.1.  |t Application of the CWT to Diagnostic of Electrical Machines --  |g 14.7.2.  |t Application of the Complex CWT to Diagnostic of Electrical Machines --  |g 14.7.3.  |t Experimental Results --  |g 14.8.  |t Wigner-Ville Distribution Approach --  |g 14.8.1.  |t Basis for the Application of the WVD to Diagnostic of Electrical Machines --  |g 14.8.2.  |t Application of the WVD to Monocomponent Signals --  |g 14.8.3.  |t Application of the WVD to Multicomponent Signals --  |g 14.9.  |t Instantaneous Frequency Approach --  |g 14.9.1.  |t Basis for the Application of the IF Approach to Diagnostic of Electrical Machines --  |g 14.9.2.  |t Calculating the IF of a Monocomponent Signal --  |g 14.9.3.  |t Practical Application of the IF Approach --  |t References --  |g pt. Four  |t Control Design Techniques for Synchronous Motors --  |g 15.  |t Sensorless Speed Control of PMSM /  |r Michael Hilairet --  |g 15.1.  |t Introduction --  |g 15.2.  |t PMSM Models and Problem Formulation --  |g 15.2.1.  |t Problem Formulation --  |g 15.3.  |t Controller Structure and Main Result --  |g 15.4.  |t Unavailability of a Linearization-Based Design --  |g 15.5.  |t Full Information Control --  |g 15.5.1.  |t Port-Hamiltonian Model --  |g 15.5.2.  |t Full-Information IDA-PBC --  |g 15.5.3.  |t Certainty Equivalent Sensorless Controller --  |g 15.6.  |t Position Observer of Ortega et al. (2011) --  |g 15.6.1.  |t Flux Observer and Stability Properties --  |g 15.6.2.  |t Description of the Observer in Terms of ραβ --  |g 15.7.  |t I&I Speed and Load Torque Observer --  |g 15.8.  |t Proof of the Main Result --  |g 15.8.1.  |t Currents and Speed Tracking Errors --  |g 15.8.2.  |t Estimation Error for ραβ --  |g 15.8.3.  |t Speed and Load Torque Estimation Errors --  |g 15.8.4.  |t Proof of Proposition 15.3.1 --  |g 15.9.  |t Simulation and Experimental Results --  |g 15.9.1.  |t Simulation Results --  |g 15.9.2.  |t Experimental Results --  |g 15.10.  |t Future Research --  |g 15.A.  |t Appendix --  |t References --  |g 16.  |t Adaptive Output-Feedback Control of Permanent-Magnet Synchronous Motors /  |r Cristiano Maria Verrelli --  |g 16.1.  |t Introduction --  |g 16.2.  |t Dynamic Model and Problem Statement --  |g 16.3.  |t Nonlinear Adaptive Control --  |g 16.4.  |t Preliminary Result (Tomei and Verrelli 2008) --  |g 16.5.  |t Main Result (Tomei and Verrelli 2011) --  |g 16.6.  |t Simulation Results (Bifaretti et al. 2012) --  |g 16.6.1.  |t Response to Time-Varying Load Torque --  |g 16.6.2.  |t Response to Parameter Uncertainties --  |g 16.7.  |t Experimental Setup and Results (Bifaretti et al. 2012) --  |g 16.8.  |t Conclusions --  |t References --  |g 17.  |t Robust Fault Detection for a Permanent-Magnet Synchronous Motor Using a Nonlinear Observer /  |r Giuseppe Orlando --  |g 17.1.  |t Introduction --  |g 17.2.  |t Preliminaries --  |g 17.2.1.  |t PMSM Modeling --  |g 17.3.  |t Control Design --  |g 17.3.1.  |t Robust Observer of Rotor Angular Position and Velocity for the Tracking Problem --  |g 17.4.  |t Faulty Case --  |g 17.5.  |t Simulation Tests --  |t References --  |g 18.  |t On Digitization of Variable Structure Control for Permanent Magnet Synchronous Motors /  |r Fengling Han --  |g 18.1.  |t Introduction --  |g 18.2.  |t Control System of PMSM --  |g 18.3.  |t Dynamic Model of PMSM --  |g 18.4.  |t PI Control of PMSM Servo-System --  |g 18.5.  |t High-Order Terminal Sliding-Mode Control of PMSM Servo System --  |g 18.5.1.  |t Velocity Controller Design --  |g 18.5.2.  |t q-Axis Current Controller Design --  |g 18.5.3.  |t d-Axis Current Controller Design --  |g 18.5.4.  |t Simulations --  |g 18.6.  |t Sliding-Mode-Based Mechanical Resonance Suppressing Method --  |g 18.6.1.  |t Load Speed Controller Design --  |g 18.6.2.  |t d-Axis Current Controller Design --  |g 18.6.3.  |t q-Axis Current Controller Design --  |g 18.6.4.  |t Simulations --  |g 18.7.  |t Digitization of TSM Controllers of PMSM Servo System --  |g 18.7.1.  |t Backward Difference Discretization Method --  |g 18.7.2.  |t Bilinear Transformation --  |g 18.8.  |t Conclusions --  |t References --  |g 19.  |t Control of Interior Permanent Magnet Synchronous Machines /  |r Rukmi Dutta --  |g 19.1.  |t Introduction --  |g 19.2.  |t IPM Synchronous Machine Model --  |g 19.2.1.  |t Torque-Speed Characteristics in the Steady State --  |g 19.2.2.  |t Optimum Control Trajectories for IPM Synchronous Machines in the Rotor Reference Frame --  |g 19.3.  |t Optimum Control Trajectories --  |g 19.3.1.  |t MTPA Trajectory --  |g 19.3.2.  |t Field-Weakening (Constant-Power) Trajectory --  |g 19.3.3.  |t Implementation Issues of Current Vector Controlled IPMSM Drive --  |g 19.4.  |t Sensorless Direct Torque Control of IPM Synchronous Machines --  |g 19.4.1.  |t Control of the Amplitude and Rotation of the Stator Flux Linkage Vector --  |g 19.4.2.  |t Optimum Control Trajectories with DTC --  |g 19.4.3.  |t Implementation of Trajectory Control for DTC --  |g 19.5.  |t Sensorless DTC with Closed-Loop Flux Estimation --  |g 19.6.  |t Sensorless Operation at Very Low Speed with High-Frequency Injection --  |g 19.7.  |t Conclusions --  |t References --  |g 20.  |t Nonlinear State-Feedback Control of Three-Phase Wound Rotor Synchronous Motors /  |r Fouad Giri --  |g 20.1.  |t Introduction --  |g 20.2.  |t System Modeling --  |g 20.2.1.  |t Three-Phases AC/DC Rectifier Modeling --  |g 20.2.2.  |t Inverter-Motor Subsystem Modeling --  |g 20.3.  |t Nonlinear Adaptive Controller Design --  |g 20.3.1.  |t Control Objectives --  |g 20.3.2.  |t Inverter-Motor Subsystem Control Design --  |g 20.3.3.  |t Reactive Power and DC Voltage Controller --  |g 20.4.  |t Simulation --  |g 20.4.1.  |t Simulation and Implementation Considerations --  |g 20.4.2.  |t Simulation Results --  |g 20.5.  |t Conclusion --  |t References --  |g pt. Five  |t Industrial Applications of AC Motors Control --  |g 21.  |t AC Motor Control Applications in Vehicle Traction /  |r Rukmi Dutta --  |g 21.1.  |t Introduction --  |g 21.1.1.  |t Electromechanical Requirements for Traction Drives in the Steady-State --  |g 21.1.2.  |t Impact of CPSR on Motor Power Rating and Acceleration Time of a Vehicle --  |g 21.2.  |t Machines and Associated Control for Traction Applications --  |g 21.2.1.  |t Induction Machines --  |g 21.2.2.  |t Interior Permanent Magnet Synchronous Machines --  |g 21.2.3.  |t Switched Reluctance Machines --  |g 21.3.  |t Power Converters for AC Electric Traction Drives --  |g 21.4.  |t Control Issues for Traction Drives --  |g 21.4.1.  |t Torque and Slip-Speed Ratio Control --  |g 21.4.2.  |t Control of Regenerative Braking --  |g 21.5.  |t Conclusions --  |t References --  |g 22.  |t Induction Motor Control Application in High-Speed Train Electric Drive /  |r Marc Diguet --  |g 22.1.  |t Introduction --  |g 22.2.  |t Description of the High-Speed Train Traction System --  |g 22.2.1.  |t Induction Motor --  |g 22.2.2.  |t Torque Transmission System --  |g 22.2.3.  |t High-Power Electronic Converter --  |g 22.2.4.  |t Motor Control Principle --  |g 22.3.  |t Estimation Methods --  |g 22.3.1.  |t Speed Observer --  |g 22.3.2.  |t Motor Torque Estimation --  |g 22.4.  |t Simulation Investigations --  |g 22.5.  |t Experimental Test Bench --  |g 22.6.  |t Experimental Investigations --  |g 22.7.  |t Diagnosis System Principles --  |g 22.7.1.  |t Diagnosis of Speed Sensor --  |g 22.7.2.  |t Diagnosis of Traction Torque Transmission --  |g 22.8.  |t Summary and Perspectives --  |t References --  |g 23.  |t AC Motor Control Applications in High-Power Industrial Drives /  |r Ajit K. Chattopadhyay --  |g 23.1.  |t Introduction --  |g 23.2.  |t High-Power Semiconductor Devices --  |g 23.2.1.  |t High-Power SCR --  |g 23.2.2.  |t High-Power GTO --  |g 23.2.3.  |t IGCT/GCT --  |g 23.2.4.  |t IGBT --  |g 23.2.5.  |t IEGT --  |g 23.3.  |t High-Power Converters for AC Drives and Control Methods --  |g 23.3.1.  |t Pulse Width Modulation for Converters --  |g 23.3.2.  |t Control Methods of High-Power Converter-Fed Drives --  |g 23.4.  |t Control of Induction Motor Drives --  |g 23.4.1.  |t Induction Motor Drives with Scalar or Volts/Hz Control --  |g 23.4.2.  |t Induction Motor Drives with Vector Control --  |g 23.4.3.  |t Induction Motor Drives with Direct Torque Control (DTC) --  |g 23.5.  |t Control of Synchronous Motor Drives --  |g 23.5.1.  |t Synchronous Motor Drives with Scalar Control --  |g 23.5.2.  |t Synchronous Motor Drives with Vector Control --  |g 23.6.  |t Application Examples of Control of High-Power AC Drives --  |g 23.6.1.  |t Steel Mills --  |g 23.6.2.  |t Cement and Ore Grinding Mills --  |g 23.6.3.  |t Ship Drive and Marine Electric Propulsion --  |g 23.6.4.  |t Mine Hoists, Winders, and Draglines --  |g 23.6.5.  |t Pumps, Fans and Compressors in the Industry --  |g 23.7.  |t New Developments and Future Trends --  |g 23.8.  |t Conclusions --  |t References. 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25209609 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25069738 
938 |a Books 24x7  |b B247  |n bke00056227 
938 |a Coutts Information Services  |b COUT  |n 25297461 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1161324 
938 |a ebrary  |b EBRY  |n ebr10684926 
938 |a EBSCOhost  |b EBSC  |n 566503 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25297461 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00063910 
938 |a YBP Library Services  |b YANK  |n 10450451 
938 |a YBP Library Services  |b YANK  |n 9984879 
938 |a YBP Library Services  |b YANK  |n 10407710 
994 |a 92  |b IZTAP