Modern Diffraction Methods.
The first comprehensive overview of the potential and virtues of modern diffraction methods, this book covers various applications in which these versatile and very important techniques play a major role. These range from nanoscience to materials science, surface technologies to single crystal struc...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Weinheim :
Wiley,
2013.
|
Edición: | 2nd ed. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Modern Diffraction Methods; Contents; Preface; About the Editors; List of Contributors; Part I Structure Determination; 1 Structure Determination of Single Crystals; 1.1 Introduction; 1.2 The Electron Density; 1.3 Diffraction and the Phase Problem; 1.4 Fourier Cycling and Difference Fourier Maps; 1.5 Statistical Properties of Diffracted Intensities; 1.6 The Patterson Function; 1.7 Patterson Search Methods; 1.8 Direct Methods; 1.9 Charge Flipping and Low-Density Elimination; 1.10 Outlook and Summary; References; 2 Modern Rietveld Refinement, a Practical Guide; 2.1 The Peak Intensity.
- 2.2 The Peak Position2.3 The Peak Profile; 2.4 The Background; 2.5 The Mathematical Procedure; 2.6 Agreement Factors; 2.7 Global Optimization Method of Simulated Annealing; 2.8 Rigid Bodies; 2.9 Introduction of Penalty Functions; 2.10 Parametric Rietveld Refinement; 2.10.1 Parameterization of the Scale Factor Depending on Time for Kinetic Analysis; 2.10.2 Parameterization of the Lattice Parameters Depending on Pressure for Determination of the Equations of State; 2.10.3 Parameterization of Symmetry Modes Depending on Temperature for Determination of Order Parameters; References.
- 3 Structure of Nanoparticles from Total Scattering3.1 Introduction; 3.2 Total Scattering Experiments; 3.2.1 Using X-Rays; 3.2.2 Using Neutrons; 3.3 Structure Modeling and Refinement; 3.3.1 Using a Particle Form Factor; 3.3.2 Modeling Finite Nanoparticles; 3.4 Examples; 3.4.1 BaTiO3; 3.4.2 CdSe/ZnS Core-Shell Particles; 3.5 Outlook; References; Part II Analysis of the Microstructure; 4 Diffraction Line-Profile Analysis; 4.1 Introduction; 4.2 Instrumental Broadening; 4.2.1 Determination of the Instrumental Profile Using a Reference (Standard) Specimen.
- 4.2.2 Determination of the Instrumental Profile by Calculus4.2.3 Subtraction/Incorporation of the Instrumental Broadening; 4.3 Structural, Specimen Broadening; 4.3.1 Measures of Line Broadening; Fourier Series Representation of Diffraction Lines; 4.3.2 Column Length/Crystallite Size and Column-Length/Crystallite-Size Distribution; 4.3.3 Microstrain Broadening; 4.3.3.1 Assumptions in Integral-Breadth Methods; 4.3.3.2 Assumptions in Fourier Methods; 4.3.3.3 Microstrain-Broadening Descriptions Derived from a Microstructural Model.
- 4.3.4 Anisotropic Size and Microstrain( -Like) Diffraction-Line Broadening4.3.5 Macroscopic Anisotropy; 4.3.6 Crystallite Size and Coherency of Diffraction; 4.4 Practical Application of Line-Profile Analysis; 4.4.1 Line-Profile Decomposition; 4.4.1.1 Breadth Methods; 4.4.1.2 Fourier Methods; 4.4.1.3 Whole Powder-Pattern Fitting; 4.4.2 Line-Profile Synthesis; 4.4.2.1 General Strain-Field Method; 4.4.2.2 Specific Microstructural Models: Whole Powder-Pattern Modeling (WPPM) and Multiple Whole-Profile Modeling/Fitting (MWP); 4.4.2.3 General Atomistic Structure: the Debye Scattering Function.