Cargando…

A mutation-selection model with recombination for general genotypes /

"We investigate a continuous time, probability measure-valued dynamical system that describes the process of mutation-selection balance in a context where the population is infinite, there may be infinitely many loci, and there are weak assumptions on selective costs. Our model arises when we i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Evans, Steven N. (Steven Neil) (Autor), Steinsaltz, David, 1966- (Autor), Wachter, Kenneth W. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, [2013]
Colección:Memoirs of the American Mathematical Society ; no. 1044.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Contents
  • Abstract
  • Chapter 1. Introduction
  • 1.1. Informal description of the limit model
  • 1.2. Example I: Mutation counting
  • 1.3. Example II: Polynomial selective costs
  • 1.4. Example III: Demographic selective costs
  • 1.5. Comments on the literature
  • 1.6. Overview of the remainder of the work
  • Chapter 2. Definition, Existence, and Uniqueness of the Dynamical System
  • 2.1. Spaces of measures
  • 2.2. Definition of the dynamical system
  • 2.3. Existence and uniqueness of solutions
  • 2.4. Lemmas used in the proof of existence and uniqueness
  • Chapter 3. Equilibria
  • 3.1. Introductory example: One-dimensional systems
  • 3.2. Introductory example: Multiplicative selective costs
  • 3.3. Frechet derivatives
  • 3.4. Existence of equilibria via perturbation
  • 3.5. Concave selective costs
  • 3.6. Concave selective costs: Existence and stability of equilibria
  • 3.7. Iterative computation of the minimal equilibrium
  • 3.8. Stable equilibria in the concave setting via perturbation
  • 3.9. Equilibria for demographic selective costs
  • Chapter 4. Mutation, Selection, and Recombination in Discrete Time
  • 4.1. Mutation and selection in discrete time
  • 4.2. Recombination in discrete time
  • 4.3. Recombination trees and annealed recombination
  • 4.4. Vintages
  • Chapter 5. Shattering and the Formulation of the Convergence Result
  • 5.1. Shattering of random measures
  • 5.2. Consequences of shattering
  • 5.3. Convergence to Poisson of iterated recombination
  • 5.4. Atoms in the initial intensity
  • 5.5. Preview of the main convergence result
  • Chapter 6. Convergence with Complete Poissonization
  • Chapter 7. Supporting Lemmas for the Main Convergence Result
  • 7.1. Estimates for Radon-Nikodym derivatives
  • 7.2. Comparisons with complete Poissonization
  • Chapter 8. Convergence of the Discrete Generation System
  • 8.1. Outline of the proof
  • 8.2. The convergence theorem
  • Appendix A. Results Cited in the Text
  • A.1. Gronwall's Inequality
  • A.2. Two expectation approximations
  • A.3. Identities for Poisson random measures
  • A.4. Bounds for Poisson random measures
  • A.5. Bounds for Radon-Nikodym derivatives
  • Bibliography
  • Index
  • Glossary of Notation.