A mutation-selection model with recombination for general genotypes /
"We investigate a continuous time, probability measure-valued dynamical system that describes the process of mutation-selection balance in a context where the population is infinite, there may be infinitely many loci, and there are weak assumptions on selective costs. Our model arises when we i...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
[2013]
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1044. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Contents
- Abstract
- Chapter 1. Introduction
- 1.1. Informal description of the limit model
- 1.2. Example I: Mutation counting
- 1.3. Example II: Polynomial selective costs
- 1.4. Example III: Demographic selective costs
- 1.5. Comments on the literature
- 1.6. Overview of the remainder of the work
- Chapter 2. Definition, Existence, and Uniqueness of the Dynamical System
- 2.1. Spaces of measures
- 2.2. Definition of the dynamical system
- 2.3. Existence and uniqueness of solutions
- 2.4. Lemmas used in the proof of existence and uniqueness
- Chapter 3. Equilibria
- 3.1. Introductory example: One-dimensional systems
- 3.2. Introductory example: Multiplicative selective costs
- 3.3. Frechet derivatives
- 3.4. Existence of equilibria via perturbation
- 3.5. Concave selective costs
- 3.6. Concave selective costs: Existence and stability of equilibria
- 3.7. Iterative computation of the minimal equilibrium
- 3.8. Stable equilibria in the concave setting via perturbation
- 3.9. Equilibria for demographic selective costs
- Chapter 4. Mutation, Selection, and Recombination in Discrete Time
- 4.1. Mutation and selection in discrete time
- 4.2. Recombination in discrete time
- 4.3. Recombination trees and annealed recombination
- 4.4. Vintages
- Chapter 5. Shattering and the Formulation of the Convergence Result
- 5.1. Shattering of random measures
- 5.2. Consequences of shattering
- 5.3. Convergence to Poisson of iterated recombination
- 5.4. Atoms in the initial intensity
- 5.5. Preview of the main convergence result
- Chapter 6. Convergence with Complete Poissonization
- Chapter 7. Supporting Lemmas for the Main Convergence Result
- 7.1. Estimates for Radon-Nikodym derivatives
- 7.2. Comparisons with complete Poissonization
- Chapter 8. Convergence of the Discrete Generation System
- 8.1. Outline of the proof
- 8.2. The convergence theorem
- Appendix A. Results Cited in the Text
- A.1. Gronwall's Inequality
- A.2. Two expectation approximations
- A.3. Identities for Poisson random measures
- A.4. Bounds for Poisson random measures
- A.5. Bounds for Radon-Nikodym derivatives
- Bibliography
- Index
- Glossary of Notation.