Cargando…

Spin-Crossover Materials : Properties and Applications.

Beginning with an introductory chapter describing the spin-crossover phenomenon and a historical overview of the field since it was first observed in the 1930s, this book looks at recent advances in the chemistry of "traditional" spin-crossover complexes and materials containing iron(II),...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Halcrow, Malcolm A.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Wiley, 2013.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Spin-Crossover Materials; Contents; List of Contributors; Preface; 1 The Development of Spin-Crossover Research; 1.1 Introduction; 1.2 Discrete Clusters of SCO Compounds; 1.2.1 Dinuclear FeII
  • FeII SCO Clusters; 1.2.2 Tri-, Tetra-, Penta- and Hexa-nuclear FeII SCO Clusters; 1.3 1D Chains of FeII SCO Materials; 1.4 1D Chains of FeIII SCO Materials; 1.5 2D Sheets of FeII SCO Materials; 1.6 3D Porous SCO Materials; 1.7 Some Recent Developments in Mononuclear SCO FeII, FeIII and CoII Compounds; 1.7.1 Iron(II) and Iron(III); 1.7.2 Cobalt(II); 1.8 Multifunctional/Hybrid SCO Materials.
  • 1.8.1 SCO and Porosity1.8.2 SCO and Electrical Conductivity; 1.8.3 SCO and (i) Short-Range Exchange Coupling or (ii) Long-Range Magnetic Order; 1.8.4 SCO and Liquid Crystals; 1.8.5 SCO and Gels; 1.8.6 SCO and NLO; 1.9 Developments in Instrumental Methods in Spin-Crossover Measurements; 1.10 Applications of Molecular Spin-Crossover Compounds; 1.11 Summary; Acknowledgements; References; 2 Novel Mononuclear Spin-Crossover Complexes; 2.1 Introduction and General Considerations; 2.2 Novel Coordination Numbers (CN), Coordination Geometries and Metal Centres; 2.2.1 Coordination Number 7.
  • 2.2.2 Coordination Number 62.2.3 Coordination Number 5; 2.2.4 Coordination Number 4+1; 2.2.5 Coordination Number 4; 2.3 Iron Complexes with Novel Ligand Donor Atoms and New Ligand Systems; 2.3.1 N6 Coordination Sphere; 2.3.2 N4O2 Coordination Sphere; 2.4 Other Examples; 2.5 Conclusion and Outlook; References; 3 Spin-Crossover in Discrete Polynuclear Complexes; 3.1 Introduction; 3.2 Dinuclear Iron(II) Complexes; 3.2.1 Supramolecular Approach; 3.2.2 'Controlled/Designer-Ligand' Approach; 3.2.3 Ligands with Two Isolated Binding Pockets.
  • 3.2.4 Ligands with Potential for Communication between Binding Pockets3.3 Higher Nuclearity Iron(II) Compounds; 3.3.1 Trinuclear Iron(II) Complexes; 3.3.2 Tetranuclear Iron(II) Complexes; 3.3.3 Higher Nuclearity Mixed Metal/Valent Iron(II) Complexes; 3.4 Iron(III); 3.4.1 Dinuclear Iron(III) Complexes; 3.4.2 Mixed Metal Iron(III) Complexes; 3.4.3 Mixed Valence Iron(II)/(III) Complexes; 3.5 Cobalt(II); 3.5.1 Dinuclear Cobalt(II) Complexes; 3.5.2 Trinuclear Cobalt(II) Complexes; 3.6 Dinuclear Chromium(II) Complex; 3.7 Concluding Remarks; References; 4 Polymeric Spin-Crossover Materials.
  • 4.1 Introduction4.2 One-Dimensional SCO-CPs; 4.2.1 Triazole Based Bridges; 4.2.2 Tetrazole Based Bridges; 4.2.3 Bis-Monodentate Pyridine-Like Bridges; 4.2.4 Polydentate Chelate Bridges; 4.2.5 Anionic Bridging Ligands; 4.3 Two Dimensional SCO-CPs; 4.3.1 Neutral Organic Bridging Ligands; 4.3.2 Dicyanometalate [MI(CN)2]- Bridging Ligands (MI = Cu, Ag, Au); 4.3.3 Tetracyanometalate [MII(CN)4]2- Bridging Ligands (MII = Ni, Pd, Pt); 4.4 Three-Dimensional SCO-CPs; 4.4.1 Neutral Organic Bridging Ligands; 4.4.2 Dicyanometalate [MI(CN)2]- Bridging Ligands.