Microfluidics.
The goal of this book is to provide engineers and researchers the tools necessary for modelling, experimenting, and simulating these microflows as a preliminary step for designing and optimizing fluidic microsystems. The various consequences of miniaturization on the hydrodynamics of gas, liquid or...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken :
Wiley,
2013.
|
Colección: | ISTE.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Microfluidics; Title Page; Copyright Page; Table of Contents; Preface; Chapter 1. Introduction to Microflows; 1.1. Fluid mechanics, fluidics and microfluidics; 1.2. Scaling effects and microeffects; 1.2.1. Importance of surface effects; 1.2.2. Dimensionless numbers; 1.3. Original pumping techniques; 1.3.1. Flows generated by electrokinetic effects; 1.3.2. Flows generated by thermal and rarefaction effects; 1.3.3. Flows generated by phase change; 1.3.4. Moving droplets on a surface; 1.4. Microfabrication and flows; 1.4.1. Varied microfabrication techniques; 1.4.2. Consequences for flows.
- 1.5. Microfluidic applications1.6. Bibliography; Chapter 2. Gaseous Microflows; 2.1. Continuum model and molecular model; 2.1.1. Molecular quantities; 2.1.2. Dilute gas; 2.1.3. Collisions and mean free path; 2.1.4. Limits of the continuum model and concept of rarefaction; 2.2. Molecular description of a flow; 2.2.1. Equilibrium gas; 2.2.2. Molecular methods in rarefied gas dynamics; 2.3 Continuum description of a flow; 2.3.1. Equation system for gas dynamics; 2.3.2. Simplified forms of Navier-Stokes equations; 2.4. Physical modeling; 2.4.1. Gas models; 2.4.2. Gas-surface interaction models.
- 2.5. Examples of microflows2.5.1. Couette flow in a free molecule regime; 2.5.2. Micro-orifice; 2.5.3. Flow rate through a rectangular or circular microchannel; 2.6. Bibliography; Chapter 3. Liquid Microflows: Particularities and Modeling; 3.1. Introduction; 3.2. Background, liquid microflow physics; 3.2.1. Continuum theory of duct flows and particularities of microflows; 3.2.2. Liquid-solid interfacial forces and electro-osmosis; 3.3. Numerical simulation of microflows; 3.3.1. Continuum computational fluid mechanics; 3.4. Non-mechanical active control of microflows; 3.4.1. Electrokinetics.
- 3.4.2. Other types of microflow active control techniques3.5. Conclusions; 3.6. Bibliography; Chapter 4. Physiological Microflows; 4.1. Description of the microvascular network; 4.1.1. Topology; 4.1.2. Blood; 4.1.3. Blood vessels; 4.2. Blood flow: an unusual means of transportation; 4.2.1. Description of blood flow; 4.2.2. The mechanisms maintaining blood flow in the circulatory network; 4.2.3. Exchanges with the external medium; 4.3. Instrumentation; 4.3.1. Intravascular pressure determination; 4.3.2. Blood flow determination; 4.3.3. Velocity determination; 4.3.4. Combined methods.
- 4.3.5. Some examples of clinical application4.4. Description of flows and microcirculatory networks; 4.4.1. Fluid flow in a duct, stationary conditions, non-stationary conditions and Marey's experiment; 4.4.2. Simulation of a network and simulation of flows in a network; 4.4.3. An alternative method for the study and simulation of a microcirculatory network; 4.5. The microcirculatory system: an optimized transport network?; 4.5.1. Early works; 4.5.2. Network optimization; 4.6. Conclusion; 4.7. Bibliography; Chapter 5. Single-Phase Heat Transfer; 5.1. Introduction.