Cargando…

Narrow operators on function spaces and vector lattices /

"Most classes of operators that are not isomorphic embeddings are characterized by some kind of a "smallness" condition. Narrow operators are those operators defined on function spaces that are "small" at {-1,0,1}-valued functions, e.g. compact operators are narrow. The orig...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Popov, Mykhaĭlo Mykhaĭlovych (Autor)
Otros Autores: Randrianantoanina, Beata
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin : De Gruyter, [2013]
Colección:De Gruyter studies in mathematics ; 45.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn826444443
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
007 cr |||||||||||
008 130201s2013 gw ob 001 0 eng d
010 |z  2012035986 
040 |a YDXCP  |b eng  |e pn  |c YDXCP  |d OCLCO  |d N$T  |d E7B  |d N$T  |d IDEBK  |d CDX  |d OCLCF  |d LRU  |d EBLCP  |d DEBSZ  |d OCLCQ  |d UAB  |d COO  |d OCLCQ  |d UIU  |d AGLDB  |d MOR  |d PIFAG  |d OCLCQ  |d MERUC  |d OCLCQ  |d ZCU  |d U3W  |d STF  |d WRM  |d OCLCQ  |d VTS  |d COCUF  |d NRAMU  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d AJS  |d OCLCO  |d OCLCQ  |d MUU  |d SFB  |d VLY  |d QGK  |d DST  |d TNZ  |d SHC  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 826479699  |a 1131945580  |a 1259130325 
020 |a 3110263343  |q (electronic bk.) 
020 |a 9783110263343  |q (electronic bk.) 
020 |z 9783110263039  |q (hardcover ;  |q alk. paper) 
020 |z 3110263033  |q (hardcover ;  |q alk. paper) 
024 7 |a 10.1515/9783110263343  |2 doi 
029 1 |a AU@  |b 000054192097 
029 1 |a DEBBG  |b BV041912781 
029 1 |a DEBBG  |b BV043039271 
029 1 |a DEBBG  |b BV044164147 
029 1 |a DEBSZ  |b 397282915 
029 1 |a DEBSZ  |b 421278730 
029 1 |a DEBSZ  |b 478281781 
035 |a (OCoLC)826444443  |z (OCoLC)826479699  |z (OCoLC)1131945580  |z (OCoLC)1259130325 
041 |a eng 
050 4 |a QA329.5  |b .P67 2013eb 
072 7 |a MAT  |x 031000  |2 bisacsh 
082 0 4 |a 515/.73  |2 23 
084 |a SK 600  |2 rvk  |0 (DE-625)rvk/143248: 
049 |a UAMI 
100 1 |a Popov, Mykhaĭlo Mykhaĭlovych,  |e author. 
245 1 0 |a Narrow operators on function spaces and vector lattices /  |c by Mikhail Popov, Beata Randrianantoanina. 
260 |a Berlin :  |b De Gruyter,  |c [2013] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a De Gruyter studies in mathematics ;  |v 45 
504 |a Includes bibliographical references and indexes. 
505 0 |a Introduction and preliminaries -- Each "small" operator is narrow -- Applications to nonlocally convex spaces -- Noncompact narrow operators -- Ideal properties, conjugates, spectrum and numerical radii -- Daugavet-type properties of Lebesgue and Lorentz spaces -- Strict singularity versus narrowness -- Weak embeddings of L1 -- Spaces X for which every operator T L(Lp, X) is narrow -- Narrow operators on vector lattices -- Some variants of the notion of narrow operators -- Open problems. 
520 |a "Most classes of operators that are not isomorphic embeddings are characterized by some kind of a "smallness" condition. Narrow operators are those operators defined on function spaces that are "small" at {-1,0,1}-valued functions, e.g. compact operators are narrow. The original motivation to consider such operators came from theory of embeddings of Banach spaces, but since then they were also applied to the study of the Daugavet property and to other geometrical problems of functional analysis. The question of when a sum of two narrow operators is narrow, has led to deep developments of the theory of narrow operators, including an extension of the notion to vector lattices and investigations of connections to regular operators. Narrow operators were a subject of numerous investigations during the last 30 years. This monograph provides a comprehensive presentation putting them in context of modern theory. It gives an in depth systematic exposition of concepts related to and influenced by narrow operators, starting from basic results and building up to most recent developments. The authors include a complete bibliography and many attractive open problems."--Publisher's website. 
588 0 |a Description based on online resource; title from digital title page (DeGruyter, viewed September 15, 2023). 
546 |a In English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Narrow operators. 
650 0 |a Riesz spaces. 
650 0 |a Function spaces. 
650 6 |a Espaces de Riesz. 
650 6 |a Espaces fonctionnels. 
650 7 |a MATHEMATICS  |x Transformations.  |2 bisacsh 
650 7 |a Function spaces  |2 fast 
650 7 |a Narrow operators  |2 fast 
650 7 |a Riesz spaces  |2 fast 
653 |a Function Space. 
653 |a Narrow Operator. 
653 |a Vector Lattice. 
700 1 |a Randrianantoanina, Beata. 
758 |i has work:  |a Narrow operators on function spaces and vector lattices (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGDdmjJWMF6P9YgBHYQRfC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Popov, Mykhaĭlo Mykhaĭlovych.  |t Narrow operators on function spaces and vector lattices.  |d Berlin : De Gruyter, [2013]  |z 9783110263039  |w (DLC) 2012035986  |w (OCoLC)818735918 
830 0 |a De Gruyter studies in mathematics ;  |v 45. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=893867  |z Texto completo 
938 |a Coutts Information Services  |b COUT  |n 25806458 
938 |a EBL - Ebook Library  |b EBLB  |n EBL893867 
938 |a ebrary  |b EBRY  |n ebr10649212 
938 |a EBSCOhost  |b EBSC  |n 530546 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis25806458 
938 |a YBP Library Services  |b YANK  |n 9340288 
994 |a 92  |b IZTAP