Cargando…

Classical and Multilinear Harmonic Analysis.

This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Muscalu, Camil
Otros Autores: Schlag, Wilhelm
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2013.
Colección:Cambridge studies in advanced mathematics.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn823724583
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|||||||||
008 130109s2013 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d OCLCQ  |d DEBSZ  |d OCLCO  |d OCLCQ  |d OCLCF  |d OCLCQ  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781139615440 
020 |a 1139615440 
029 1 |a DEBSZ  |b 379331195 
029 1 |a DEBSZ  |b 445559195 
029 1 |a AU@  |b 000055868484 
035 |a (OCoLC)823724583 
050 4 |a QA403 .M87 2013 
082 0 4 |a 515.2422  |a 515.2433  |a 515/.2422 
049 |a UAMI 
100 1 |a Muscalu, Camil. 
245 1 0 |a Classical and Multilinear Harmonic Analysis. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2013. 
300 |a 1 online resource (390 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Cambridge Studies in Advanced Mathematics 
505 0 |a Preface; Acknowledgements; 1 Fourier series: convergence and summability; 1.1 The basics: partial sums and the Dirichlet kernel; 1.2 Approximate identities, Fej ́er kernel; 1.3 The Lp convergence of partial sums; 1.4 Regularity and Fourier series; 1.5 Higher dimensions; 1.6 Interpolation of operators; Notes; Problems; Problems; Problems; Problems; Problems; Problems; Problems; Problems; Problems; Problems; Problems; Problems; 2 Harmonic functions; Poisson kernel; 2.1 Harmonic functions; 2.2 The Poisson kernel; 2.3 The Hardy-Littlewood maximal function. 
505 8 |a 2.4 Almost everywhere convergence2.5 Weighted estimates for maximal functions; Notes; 3 Conjugate harmonic functions; Hilbert transform; 3.1 Hardy spaces of analytic functions; 3.2 Riesz theorems; 3.3 Definition and simple properties of the conjugate function; 3.4 The weak-L1 bound on the maximal function; 3.5 The Hilbert transform; 3.6 Convergence of Fourier series in Lp; Notes; 4 The Fourier transform on Rd and on LCA groups; 4.1 The Euclidean Fourier transform; 4.2 Method of stationary or nonstationary phases; 4.3 The Fourier transform on locally compact Abelian groups; Notes. 
505 8 |a 5 Introduction to probability theory5.1 Probability spaces; independence; 5.2 Sums of independent variables; 5.3 Conditional expectations; martingales; Notes; 6 Fourier series and randomness; 6.1 Fourier series on L1(T): pointwise questions; 6.2 Random Fourier series: the basics; 6.3 Sidon sets; Notes; 7 Calder ́on-Zygmund theory of singular integrals; 7.1 Calder ́on-Zygmund kernels; 7.2 The Laplacian: Riesz transforms and fractional integration; 7.3 Almost everywhere convergence; homogeneous kernels; 7.4 Bounded mean oscillation space; 7.5 Singular integrals and Ap weights. 
505 8 |a 7.6 A glimpse of H1-BMO duality and further remarksNotes; 8 Littlewood-Paley theory; 8.1 The Mikhlin multiplier theorem; 8.2 Littlewood-Paley square-function estimate; 8.3 Calderon-Zygmund H ̈older spaces, and Schauder estimates; 8.4 The Haar functions; dyadic harmonic analysis; 8.5 Oscillatory multipliers; Notes; 9 Almost orthogonality; 9.1 Cotlar's lemma; 9.2 Calderon-Vaillancourt theorem; 9.3 Hardy's inequality; 9.4 The T(1) theorem via Haar functions; 9.5 Carleson measures, BMO, and T(1); Notes; 10 The uncertainty principle; 10.1 Bernstein's bound and Heisenberg's uncertainty principle. 
505 8 |a 10.2 The Amrein-Berthier theorem10.3 The Logvinenko-Sereda theorem; 10.4 Solvability of constant-coefficient linear PDEs; Notes; 11 Fourier restriction and applications; 11.1 The Tomas-Stein theorem; 11.2 The endpoint; 11.3 Restriction and PDE; Strichartz estimates; 11.4 Optimal two-dimensional restriction; Notes; 12 Introduction to the Weyl calculus; 12.1 Motivation, definitions, basic properties; 12.2 Adjoints and compositions; 12.3 The L2 theory; 12.4 A phase-space transform; Notes; References; Index. 
520 |a This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques. 
588 0 |a Print version record. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Harmonic analysis. 
650 2 |a Fourier Analysis 
650 6 |a Analyse harmonique. 
650 7 |a Harmonic analysis  |2 fast 
700 1 |a Schlag, Wilhelm. 
758 |i has work:  |a Classical and multilinear harmonic analysis (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGpkRhJ7ckb8Y3y3ry4JtC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Muscalu, Camil.  |t Classical and Multilinear Harmonic Analysis.  |d Cambridge : Cambridge University Press, ©2013  |z 9780521882453 
830 0 |a Cambridge studies in advanced mathematics. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1099818  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH33350958 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1099818 
994 |a 92  |b IZTAP