|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_ocn823724583 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
130109s2013 enk o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCO
|d OCLCQ
|d DEBSZ
|d OCLCO
|d OCLCQ
|d OCLCF
|d OCLCQ
|d UKAHL
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
020 |
|
|
|a 9781139615440
|
020 |
|
|
|a 1139615440
|
029 |
1 |
|
|a DEBSZ
|b 379331195
|
029 |
1 |
|
|a DEBSZ
|b 445559195
|
029 |
1 |
|
|a AU@
|b 000055868484
|
035 |
|
|
|a (OCoLC)823724583
|
050 |
|
4 |
|a QA403 .M87 2013
|
082 |
0 |
4 |
|a 515.2422
|a 515.2433
|a 515/.2422
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Muscalu, Camil.
|
245 |
1 |
0 |
|a Classical and Multilinear Harmonic Analysis.
|
260 |
|
|
|a Cambridge :
|b Cambridge University Press,
|c 2013.
|
300 |
|
|
|a 1 online resource (390 pages).
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Cambridge Studies in Advanced Mathematics
|
505 |
0 |
|
|a Preface; Acknowledgements; 1 Fourier series: convergence and summability; 1.1 The basics: partial sums and the Dirichlet kernel; 1.2 Approximate identities, Fej ́er kernel; 1.3 The Lp convergence of partial sums; 1.4 Regularity and Fourier series; 1.5 Higher dimensions; 1.6 Interpolation of operators; Notes; Problems; Problems; Problems; Problems; Problems; Problems; Problems; Problems; Problems; Problems; Problems; Problems; 2 Harmonic functions; Poisson kernel; 2.1 Harmonic functions; 2.2 The Poisson kernel; 2.3 The Hardy-Littlewood maximal function.
|
505 |
8 |
|
|a 2.4 Almost everywhere convergence2.5 Weighted estimates for maximal functions; Notes; 3 Conjugate harmonic functions; Hilbert transform; 3.1 Hardy spaces of analytic functions; 3.2 Riesz theorems; 3.3 Definition and simple properties of the conjugate function; 3.4 The weak-L1 bound on the maximal function; 3.5 The Hilbert transform; 3.6 Convergence of Fourier series in Lp; Notes; 4 The Fourier transform on Rd and on LCA groups; 4.1 The Euclidean Fourier transform; 4.2 Method of stationary or nonstationary phases; 4.3 The Fourier transform on locally compact Abelian groups; Notes.
|
505 |
8 |
|
|a 5 Introduction to probability theory5.1 Probability spaces; independence; 5.2 Sums of independent variables; 5.3 Conditional expectations; martingales; Notes; 6 Fourier series and randomness; 6.1 Fourier series on L1(T): pointwise questions; 6.2 Random Fourier series: the basics; 6.3 Sidon sets; Notes; 7 Calder ́on-Zygmund theory of singular integrals; 7.1 Calder ́on-Zygmund kernels; 7.2 The Laplacian: Riesz transforms and fractional integration; 7.3 Almost everywhere convergence; homogeneous kernels; 7.4 Bounded mean oscillation space; 7.5 Singular integrals and Ap weights.
|
505 |
8 |
|
|a 7.6 A glimpse of H1-BMO duality and further remarksNotes; 8 Littlewood-Paley theory; 8.1 The Mikhlin multiplier theorem; 8.2 Littlewood-Paley square-function estimate; 8.3 Calderon-Zygmund H ̈older spaces, and Schauder estimates; 8.4 The Haar functions; dyadic harmonic analysis; 8.5 Oscillatory multipliers; Notes; 9 Almost orthogonality; 9.1 Cotlar's lemma; 9.2 Calderon-Vaillancourt theorem; 9.3 Hardy's inequality; 9.4 The T(1) theorem via Haar functions; 9.5 Carleson measures, BMO, and T(1); Notes; 10 The uncertainty principle; 10.1 Bernstein's bound and Heisenberg's uncertainty principle.
|
505 |
8 |
|
|a 10.2 The Amrein-Berthier theorem10.3 The Logvinenko-Sereda theorem; 10.4 Solvability of constant-coefficient linear PDEs; Notes; 11 Fourier restriction and applications; 11.1 The Tomas-Stein theorem; 11.2 The endpoint; 11.3 Restriction and PDE; Strichartz estimates; 11.4 Optimal two-dimensional restriction; Notes; 12 Introduction to the Weyl calculus; 12.1 Motivation, definitions, basic properties; 12.2 Adjoints and compositions; 12.3 The L2 theory; 12.4 A phase-space transform; Notes; References; Index.
|
520 |
|
|
|a This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.
|
588 |
0 |
|
|a Print version record.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Harmonic analysis.
|
650 |
|
2 |
|a Fourier Analysis
|
650 |
|
6 |
|a Analyse harmonique.
|
650 |
|
7 |
|a Harmonic analysis
|2 fast
|
700 |
1 |
|
|a Schlag, Wilhelm.
|
758 |
|
|
|i has work:
|a Classical and multilinear harmonic analysis (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGpkRhJ7ckb8Y3y3ry4JtC
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Muscalu, Camil.
|t Classical and Multilinear Harmonic Analysis.
|d Cambridge : Cambridge University Press, ©2013
|z 9780521882453
|
830 |
|
0 |
|a Cambridge studies in advanced mathematics.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1099818
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH33350958
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL1099818
|
994 |
|
|
|a 92
|b IZTAP
|