|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
EBOOKCENTRAL_ocn823724196 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
130109s2013 enk o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCO
|d OCLCQ
|d DEBSZ
|d OCLCO
|d OCLCQ
|d OCLCF
|d OCLCQ
|d UKAHL
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
020 |
|
|
|a 9781139616744
|
020 |
|
|
|a 1139616749
|
029 |
1 |
|
|a DEBSZ
|b 379331276
|
029 |
1 |
|
|a DEBSZ
|b 445559292
|
029 |
1 |
|
|a AU@
|b 000055868459
|
035 |
|
|
|a (OCoLC)823724196
|
050 |
|
4 |
|a QA403 .M87 2013
|
082 |
0 |
4 |
|a 515.2433
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Muscalu, Camil.
|
245 |
1 |
0 |
|a Classical and Multilinear Harmonic Analysis.
|
260 |
|
|
|a Cambridge :
|b Cambridge University Press,
|c 2013.
|
300 |
|
|
|a 1 online resource (342 pages).
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Cambridge Studies in Advanced Mathematics
|
505 |
0 |
|
|a Preface; Acknowledgements; 1 Leibnitz rules and the generalized Korteweg-de Vries equation; 1.1 Conserved quantities; 1.2 Dispersive estimates for the linear equation; 1.3 Dispersive estimates for the nonlinear equation; 1.4 Wave packets and phase-space portraits; 1.5 The phase-space portraits of e2ix2 and e2ix3; 1.6 Asymptotics for the Airy function; Notes; Problems; 2 Classical paraproducts; 2.1 Paraproducts; 2.2 Discretized paraproducts; 2.3 Discretized Littlewood-Paley square-function operator; 2.4 Dualization of quasi-norms; 2.5 Two particular cases of Theorem 2.3. 2.6 The John -- Nirenberg inequality2.7 L1" sizes and L1" energies; 2.8 Stopping-time decompositions; 2.9 Generic estimate of the trilinear paraproduct form; 2.10 Estimates for sizes and energies; 2.11 Lp bounds for the first discrete model; 2.12 Lp bounds for the second discrete model; 2.13 The general Coifman-Meyer theorem; 2.14 Bilinear pseudodifferential operators; Notes; Problems; 3 Paraproducts on polydisks; 3.1 Biparameter paraproducts; 3.2 Hybrid square and maximal functions; 3.3 Biparameter BMO; 3.4 Carleson's counterexample; 3.5 Proof of Theorem 3.1; part 1; 3.6 Journ ́e's lemma. 3.7 Proof of Theorem 3.1 part 2; 3.8 Multiparameter paraproducts; 3.9 Proof of Theorem 3.1; a simplification; 3.10 Proof of the generic decomposition; Notes; Problems; 4 Calder ́on commutators and the Cauchy integral; 4.1 History; 4.2 The first Calder ́on commutator; 4.3 Generalizations; 4.4 The Cauchy integral on Lipschitz curves; 4.5 Generalizations; Notes; Problems; 5 Iterated Fourier series and physical reality; 5.1 Iterated Fourier series; 5.2 Physical reality; 5.3 Generic Lp AKNS systems for 1p <2; 5.4 Generic L2 AKNS systems; Notes; Problems; 6 The bilinear Hilbert transform. 6.1 Discretization6.2 The particular scale-1 case of Theorem 6.5; 6.3 Trees, L2 sizes, and L2 energies; 6.4 Proof of Theorem 6.5; 6.5 Bessel-type inequalities; 6.6 Stopping-time decompositions; 6.7 Generic estimate of the trilinear BHT form; 6.8 The 1/2 <r <2/3 counterexample; 6.9 The bilinear Hilbert transform on polydisks; Notes; Problems; 7 Almost everywhere convergence of Fourier series; 7.1 Reduction to the continuous case; 7.2 Discrete models; 7.3 Proof of Theorem 7.2 in the scale-1 case; 7.4 Estimating a single tree; 7.5 Additional sizes and energies; 7.6 Proof of Theorem 7.2. 7.7 Estimates for Carleson energies7.8 Stopping-time decompositions; 7.9 Generic estimate of the bilinear Carleson form; 7.10 Fefferman's counterexample; Notes; Problems; 8 Flag paraproducts; 8.1 Generic flag paraproducts; 8.2 Mollifying a product of two paraproducts; 8.3 Flag paraproducts and quadratic NLS; 8.4 Flag paraproducts and U-statistics; 8.5 Discrete operators and interpolation; 8.6 Reduction to the model operators; 8.7 Rewriting the 4-linear forms; 8.8 The new size and energy estimates; 8.9 Estimates for T1 and T1,l0 near A4; 8.10 Estimates for T1*3 and T*31,l0 near A31 and A32. 8.11 Upper bounds for flag sizes.
|
520 |
|
|
|a This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.
|
588 |
0 |
|
|a Print version record.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Harmonic analysis.
|
650 |
|
0 |
|a Mathematical analysis.
|
650 |
|
0 |
|a Mathematics.
|
650 |
|
0 |
|a Nonlinear equation.
|
650 |
|
2 |
|a Fourier Analysis
|
650 |
|
2 |
|a Mathematics
|
650 |
|
6 |
|a Analyse harmonique.
|
650 |
|
6 |
|a Analyse mathématique.
|
650 |
|
6 |
|a Mathématiques.
|
650 |
|
7 |
|a Harmonic analysis
|2 fast
|
650 |
|
7 |
|a Mathematical analysis
|2 fast
|
650 |
|
7 |
|a Mathematics
|2 fast
|
700 |
1 |
|
|a Schlag, Wilhelm.
|
758 |
|
|
|i has work:
|a Classical and multilinear harmonic analysis (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGpkRhJ7ckb8Y3y3ry4JtC
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Muscalu, Camil.
|t Classical and Multilinear Harmonic Analysis.
|d Cambridge : Cambridge University Press, ©2013
|z 9781107031821
|
830 |
|
0 |
|a Cambridge studies in advanced mathematics.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1099945
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH34205351
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL1099945
|
994 |
|
|
|a 92
|b IZTAP
|