Cargando…

Introduction to Statistics Through Resampling Methods and R.

Written in an informal, highly accessible style, this text is an excellent guide to descriptive statistics, estimation, testing hypotheses, and model building. It includes all the tools needed to facilitate quick learning, including: more than 250 exercises with selected hints, multiple explanations...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Good, Phillip I.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : Wiley, 2012.
Edición:2nd ed.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn823389949
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 121227s2012 nyu o 000 0 eng d
040 |a MHW  |b eng  |e pn  |c MHW  |d EBLCP  |d YDXCP  |d DEBSZ  |d OCLCQ  |d MERUC  |d ZCU  |d ICG  |d OCLCO  |d OCLCF  |d OCLCQ  |d OCLCO  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d HS0  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9781118497579 
020 |a 1118497570 
029 1 |a DEBBG  |b BV044049889 
029 1 |a DEBSZ  |b 397454201 
035 |a (OCoLC)823389949 
050 4 |a QA278.8 .G384 2012 
082 0 4 |a 519.54 
084 |a MAT029000  |2 bisacsh 
049 |a UAMI 
100 1 |a Good, Phillip I. 
245 1 0 |a Introduction to Statistics Through Resampling Methods and R. 
250 |a 2nd ed. 
260 |a New York :  |b Wiley,  |c 2012. 
300 |a 1 online resource (308 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
520 |a Written in an informal, highly accessible style, this text is an excellent guide to descriptive statistics, estimation, testing hypotheses, and model building. It includes all the tools needed to facilitate quick learning, including: more than 250 exercises with selected hints, multiple explanations of basic concepts, real-life applications in client-, and statistics-related disciplines, a companion FTP site with data sets and R programs, and more. 
505 0 |a Cover; Title page; Copyright page; Contents; Preface; Chapter 1: Variation; 1.1 Variation; 1.2 Collecting Data; 1.2.1 A Worked-Through Example; 1.3 Summarizing Your Data; 1.3.1 Learning to Use R; 1.4 Reporting Your Results; 1.4.1 Picturing Data; 1.4.2 Better Graphics; 1.5 Types of Data; 1.5.1 Depicting Categorical Data; 1.6 Displaying Multiple Variables; 1.6.1 Entering Multiple Variables; 1.6.2 From Observations to Questions; 1.7 Measures of Location; 1.7.1 Which Measure of Location?; *1.7.2 The Geometric Mean; 1.7.3 Estimating Precision; 1.7.4 Estimating with the Bootstrap 
505 8 |a 1.8 Samples and Populations1.8.1 Drawing a Random Sample; *1.8.2 Using Data That Are Already in Spreadsheet Form; 1.8.3 Ensuring the Sample Is Representative; 1.9 Summary and Review; Chapter 2: Probability; 2.1 Probability; 2.1.1 Events and Outcomes; 2.1.2 Venn Diagrams; 2.2 Binomial Trials; 2.2.1 Permutations and Rearrangements; *2.2.2 Programming Your Own Functions in R; 2.2.3 Back to the Binomial; 2.2.4 The Problem Jury; *2.3 Conditional Probability; 2.3.1 Market Basket Analysis; 2.3.2 Negative Results; 2.4 Independence; 2.5 Applications to Genetics; 2.6 Summary and Review 
505 8 |a Chapter 3: Two Naturally Occurring Probability Distributions3.1 Distribution of Values; 3.1.1 Cumulative Distribution Function; 3.1.2 Empirical Distribution Function; 3.2 Discrete Distributions; 3.3 The Binomial Distribution; *3.3.1 Expected Number of Successes in n Binomial Trials; 3.3.2 Properties of the Binomial; 3.4 Measuring Population Dispersion and Sample Precision; 3.5 Poisson: Events Rare in Time and Space; 3.5.1 Applying the Poisson; 3.5.2 Comparing Empirical and Theoretical Poisson Distributions; 3.5.3 Comparing Two Poisson Processes; 3.6 Continuous Distributions 
505 8 |a 3.6.1 The Exponential Distribution3.7 Summary and Review; Chapter 4: Estimation and the Normal Distribution; 4.1 Point Estimates; 4.2 Properties of the Normal Distribution; 4.2.1 Student's t-Distribution; 4.2.2 Mixtures of Normal Distributions; 4.3 Using Confidence Intervals to Test Hypotheses; 4.3.1 Should We Have Used the Bootstrap?; 4.3.2 The Bias-Corrected and Accelerated Nonparametric Bootstrap; 4.3.3 The Parametric Bootstrap; 4.4 Properties of Independent Observations; 4.5 Summary and Review; Chapter 5: Testing Hypotheses; 5.1 Testing a Hypothesis; 5.1.1 Analyzing the Experiment 
505 8 |a 5.1.2 Two Types of Errors5.2 Estimating Effect Size; 5.2.1 Effect Size and Correlation; 5.2.2 Using Confidence Intervals to Test Hypotheses; 5.3 Applying the t-Test to Measurements; 5.3.1 Two-Sample Comparison; 5.3.2 Paired t-Test; 5.4 Comparing Two Samples; 5.4.1 What Should We Measure?; 5.4.2 Permutation Monte Carlo; 5.4.3 One- vs. Two-Sided Tests; 5.4.4 Bias-Corrected Nonparametric Bootstrap; 5.5 Which Test Should We Use?; 5.5.1 p-Values and Significance Levels; 5.5.2 Test Assumptions; 5.5.3 Robustness; 5.5.4 Power of a Test Procedure; 5.6 Summary and Review 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Resampling (Statistics) 
650 6 |a Rééchantillonnage (Statistique) 
650 7 |a Resampling (Statistics)  |2 fast 
758 |i has work:  |a Introduction to statistics through resampling methods and R/SUS (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFwJw9XcqrJWtHJpkHJrG3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9781118428214 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1104736  |z Texto completo 
938 |a YBP Library Services  |b YANK  |n 9571186 
994 |a 92  |b IZTAP