Cargando…

Metal failures : mechanisms, analysis, prevention /

"One of the only texts available to cover not only how failure occurs but also examine methods developed to expose the reasons for failure, Metal Failures has long been considered the most definitive and authoritative resources in metallurgical failure analysis. Now in a completely revised edit...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: McEvily, A. J.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, New Jersey : John Wiley & Sons, Inc., [2013]
Edición:2nd edition.
Colección:Engineering professional collection
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Failure Analysis
  • 2. Elements of Elastic Deformation
  • 3. Elements of Plastic Deformation
  • 4. Elements of Fracture Mechanics
  • 5. Alloys and Coatings
  • 6. Examination and Reporting Procedures
  • 7. Brittle and Ductile Fractures
  • 8. Thermal and Residual Stresses
  • 9. Creep
  • 10. Fatigue
  • 11. Statistical Distributions
  • 12. Defects
  • 13. Environmental Effects
  • 14. Flaw Detection
  • 15. Wear.
  • 1. Failure Analysis
  • I. Introduction
  • II. Examples of Case Studies Involving Structural Failures
  • III. Summary
  • 2. Elements of Elastic Deformation
  • I. Introduction
  • II. Stress
  • C. Principal Stresses
  • III. Strain
  • IV. Elastic Constitutive Relationships
  • C. Elastic Stress-Strain Relations
  • V. State of Stress Ahead of a Notch
  • VI. Summary
  • I. Principal Stresses and Stress Invariants
  • II. Maximum and Octahedral Shear Stresses
  • III. Stress Deviator Tensor
  • I. Bending of a Beam
  • II. Torsion of a Circular Shaft
  • III. Thin-Walled Cylinder
  • 3. Elements of Plastic Deformation
  • I. Introduction
  • II. Theoretical Shear Strength
  • III. Dislocations
  • IV. Yield Criteria for Multiaxial Stress
  • V. State of Stress in the Plastic Zone Ahead of a Notch in Plane-Strain Deformation
  • VI. Summary
  • 4. Elements of Fracture Mechanics
  • I. Introduction
  • II. Griffith's Analysis of the Critical Stress for Brittle Fracture
  • III. Alternative Derivation of the Griffith Equation
  • IV. Orowan-Irwin Modification of the Griffith Equation
  • V. Stress Intensity Factors
  • VI. The Three Loading Modes
  • VII. Determination of the Plastic Zone Size
  • VIII. Effect of Thickness on Fracture Toughness
  • IX. The R-Curve
  • X. Short Crack Limitation
  • XI. Case Studies
  • XII. The Plane-Strain Crack Arrest Fracture Toughness, KIa, of Ferritic Steels
  • XIII. Elastic-plastic Fracture Mechanics
  • XIV. Failure Assessment Diagrams
  • XV. Summary
  • 5. Alloys and Coatings
  • II. Alloying Elements
  • III. Periodic Table
  • IV. Phase Diagrams
  • C. Titanium Alloys
  • V. Coatings
  • VI. Summary
  • 6. Examination and Reporting Procedures
  • I. Introduction
  • II. Tools for Examinations in the Field
  • III. Preparation of Fracture Surfaces for Examination
  • IV. Visual Examination
  • V. Case Study: Failure of a Steering Column Component
  • VI. Optical Examination
  • VII. Case Study: Failure of a Helicopter Tail Rotor
  • VIII. The Transmission Electron Microscope (TEM)
  • IX. The Scanning Electron Microscope (SEM)
  • X. Replicas
  • XI. Spectrographic and Other Types of Chemical Analysis
  • XII. Case Study: Failure of a Zinc Die Casting
  • XIII. Specialized Analytical Techniques
  • XIV. Stress Measurement by X-Rays
  • XV. Case Study: Residual Stress in a Train Wheel
  • XVI. The Technical Report
  • XVII. Record Keeping and Testimony
  • C. Examination in Your Laboratory (or Service Laboratory)
  • I. A Final Point
  • XVIII. Summary
  • 7. Brittle and Ductile Fractures
  • I. Introduction
  • II. Brittle Fracture
  • III. Some Examples of Brittle Fracture in Steel
  • IV. Ductile-Brittle Behavior of Steel
  • V. Case Study: The Nuclear Pressure Vessel Design Code
  • VI. Case Study: Examination of Samples from the Royal Mail Ship (RMS) Titanic
  • C. Microstructure
  • VII. Ductile Fracture
  • VIII. Ductile Tensile Failure, Necking
  • C. Axisymmetric Stress in Necking
  • IX. Fractographic Features Associated with Ductile Rupture
  • X. Failure in Torsion
  • XI. Case Study: Failure of a Helicopter Bolt
  • XII. Summary.
  • 8. Thermal and Residual Stresses
  • I. Introduction
  • II. Thermal Stresses, Thermal Strain, and Thermal Shock
  • C. Thermal Shock
  • III. Residual Stresses Caused by Nonuniform Plastic Deformation
  • IV. Residual Stresses Due to Quenching
  • V. Residual Stress Toughening
  • VI. Residual Stresses Resulting from Carburizing, Nitriding, and Induction Hardening
  • C. Induction Hardening
  • VII. Residual Stresses Developed in Welding
  • VIII. Measurement of Residual Stresses
  • IX. Summary
  • 9. Creep
  • I. Introduction
  • II. Background
  • III. Characteristics of Creep
  • IV. Creep Parameters
  • V. Creep Fracture Mechanisms
  • VI. Fracture Mechanism Maps
  • VII. Case Studies
  • C. An Ovalized Tube (9)
  • VIII. Residual Life Assessment
  • IX. Stress Relaxation
  • X. Elastic Follow-up
  • XI. Summary
  • 10. Fatigue
  • I. Introduction
  • II. Background
  • III. Design Considerations
  • IV. Mechanisms of Fatigue
  • C. The Propagation of Fatigue Cracks
  • V. Factors Affecting Fatigue Crack Initiation
  • C. Shot Peening
  • VI. Factors Affecting Fatigue Crack Growth
  • VII. Analysis of the Rate of Fatigue Crack Propagation
  • VIII. Fatigue Failure Analysis
  • IX. Case Studies
  • C. Aircraft Gas Turbines
  • X. Thermal-Mechanical Fatigue
  • XI. Cavitation
  • XII. Composite Materials
  • XIII. Summary
  • 11. Statistical Distributions
  • I. Introduction
  • II. Distribution Functions
  • III. The Normal Distribution
  • IV. Statistics of Fatigue; Statistical Distributions
  • V. The Weibull Distribution
  • VI. The Gumbel Distribution
  • C. Maximum Depth of the Corrosion Pit
  • VII. The Staircase Method
  • VIII. Summary
  • 12. Defects
  • I. Introduction
  • II. Weld Defects
  • C. Laminar Tearing
  • III. Case Study: Welding Defect
  • C. Fracture in Bracing Member D-6
  • IV. Casting Defects
  • V. Case Study: Corner Cracking during Continuous Casting
  • VI. Forming Defects
  • VII. Case Studies: Forging Defects
  • VIII. Case Study: Counterfeit Part
  • IX. The Use of the Wrong Alloys; Errors in Heat Treatment, etc.
  • X. Summary
  • 13. Environmental Effects
  • I. Introduction
  • II. Definitions
  • III. Fundamentals of Corrosion Processes
  • IV. Environmentally Assisted Cracking Processes
  • V. Case Studies
  • VI. Cracking in Oil and Gas Pipelines
  • VII. Crack Arrestors and Pipeline Reinforcement
  • VIII. Plating Problems
  • IX. Case Studies
  • C. Backing Rings
  • X. Pitting Corrosion of Household Copper Tubing
  • XI. Problems with Hydrogen at Elevated Temperatures
  • XII. Hot Corrosion (Sulfidation)
  • XIII. Summary
  • 14. Flaw Detection
  • I. Introduction
  • II. Inspectability
  • III. Visual Examination (VE)
  • IV. Penetrant Testing (PT)
  • V. Case Study: Sioux City DC-10 Aircraft
  • C. Stage 1 Fan Disk Historical Data
  • VI. Case Study: MD-88 Engine Failure
  • VII. Magnetic Particle Testing (MT)
  • VIII. Case Study: Failure of an Aircraft Crankshaft
  • IX. Eddy Current Testing (ET)
  • X. Case Study: Aloha Airlines
  • XI. Ultrasonic Testing (UT)
  • C. Angle Beam Techniques
  • XII. Case Study: B747
  • XIII. Radiographic Testing (RT)
  • XIV. Acoustic Emission Testing (AET)
  • XV. Cost of Inspections
  • XVI. Summary
  • 15. Wear
  • I. Wear
  • II. The Coefficient of Friction
  • III. The Archard Equation
  • IV. An Example of Adhesive Wear
  • V. Fretting Fatigue
  • VI. Case Study: Friction and Wear; Bushing Failure
  • VII. Roller Bearings
  • C. Second Example
  • VIII. Case Study: Failure of a Railroad Car Axle
  • IX. Gear Failures
  • X. Summary.