Cargando…

Lectures on quantum computing, thermodynamics and statistical physics.

This book is a collection of lecture notes from the Symposium on Quantum Computing, Thermodynamics, and Statistical Physics, held at Kinki University in March 2012. Quantum information theory has a deep connection with statistical physics and thermodynamics. This volume introduces some of the topics...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Nakahara, Mikio
Otros Autores: Tanaka, Shu
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific, 2012.
Colección:Kinki University series on quantum computing.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Preface; CONTENTS; Quantum Annealing: From Viewpoints of Statistical Physics, Condensed Matter Physics, and Computational Physics Shu Tanaka and Ryo Tamura; 1. Introduction; 2. Ising Model; 2.1. Magnetic Systems; 2.2. Nuclear Magnetic Resonance; 3. Implementation Methods of Quantum Annealing; 3.1. Monte Carlo Method; 3.2. Deterministic Method Based on Mean-Field Approximation; 3.3. Real-Time Dynamics; 3.4. Experiments; 4. Optimization Problems; 4.1. Traveling Salesman Problem; 4.1.1. Monte Carlo Method; 4.1.2. Quantum Annealing; 4.1.3. Comparison with Simulated Annealing and Quantum Annealing.
  • 4.2. Clustering Problem5. Relationship between Quantum Annealing and Statistical Physics; 5.1. Kibble-Zurek Mechanism; 5.1.1. Efficiency of Simulated Annealing and Quantum Annealing; 5.1.2. Simulated Annealing for Random Ferromagnetic Ising Chain; 5.1.3. Quantum Annealing for Random Ferromagnetic Ising Chain; 5.1.4. Comparison between Simulated and Quantum Annealing Methods; 5.2. Frustration Effects for Simulated Annealing and Quantum Annealing; 5.2.1. Thermal Fluctuation and Quantum Fluctuation Effect of Geometrical Frustrated Systems.
  • 5.2.2. Non-Monotonic Behavior of Correlation Function in Decorated Bond System6. Conclusion; Acknowledgement; References; Spin Glass: A Bridge between Quantum Computation and Statistical Mechanics Masayuki Ohzeki; 1. Introduction: Statistical Mechanics and Quantum Mechanics; 2. Training: Statistical Mechanics; 2.1. Student's misreading point: Probability is ... ; 2.2. Probability describes ... a certain behavior; 2.3. Large deviation property; 2.4. Mean-field analysis; 2.5. Phase transition; 2.6. Spin glasses; 2.7. Gauge theory; 3. Quantum Error Correction: Surface Code; 3.1. Error model.
  • 3.2. Surface code3.2.1. Check operators and error syndrome; 3.2.2. Probability of error chains; 3.3. Analyses on accuracy thresholds for surface code; 3.3.1. Duality analysis: Simple case; 3.3.2. Duality analysis: Spin glass; 3.3.3. Duality analysis with real-space renormalization; 3.3.4. Other cases; 3.3.5. Depolarizing channel; 4. Quantum Annealing and Beyond; 4.1. Quantum adiabatic computation: Short review; 4.2. Novel type of quantum annealing; 4.2.1. Classical quantum mapping; 4.2.2. Jarzynski equality; 4.2.3. Quantum Jarzynski annealing; 4.2.4. Problems in measurement of answer.
  • 4.3. Non-adiabatic quantum computation4.3.1. Jarzynski equality for quantum system; 4.3.2. Performance of non-adiabatic quantum annealing; 4.4. Analyses on non-adiabatic quantum annealing; 4.4.1. Gauge transformation for quantum spin systems; 4.4.2. Relationship between two different paths of NQA; 4.4.3. Exact relations involving inverse statistics; 5. Summary; References; Second Law-like Inequalities with Quantum Relative Entropy: An Introduction Takahiro Sagawa; 1. Introduction; 2. Quantum States and Dynamics; 2.1. Quantum States and Observables; 2.2. Quantum Dynamics.