Cargando…

Kernels for structured data /

This book provides a unique treatment of an important area of machine learning and answers the question of how kernel methods can be applied to structured data. Kernel methods are a class of state-of-the-art learning algorithms that exhibit excellent learning results in several application domains....

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Gärtner, Thomas
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore ; Hackensack, N.J. : World Scientific Pub. Co., ©2008.
Colección:Series in machine perception and artificial intelligence ; v. 72.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBOOKCENTRAL_ocn820944529
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 090522s2008 si a ob 001 0 eng d
040 |a LGG  |b eng  |e pn  |c LGG  |d OCLCO  |d E7B  |d N$T  |d EBLCP  |d DEBSZ  |d OCLCQ  |d OCLCF  |d YDXCP  |d OCLCQ  |d LOA  |d AGLDB  |d MOR  |d CCO  |d PIFAG  |d MERUC  |d OCLCQ  |d ZCU  |d U3W  |d STF  |d WRM  |d NRAMU  |d ICG  |d INT  |d OCLCQ  |d DKC  |d AU@  |d OCLCQ  |d UKCRE  |d UKAHL  |d YDX  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 960207363  |a 961653451  |a 962647482  |a 966458573  |a 988417486  |a 992092075  |a 1037710035  |a 1038687964  |a 1045476733  |a 1086432880  |a 1153519111  |a 1193009051  |a 1282306854 
020 |a 9789812814562  |q (electronic bk.) 
020 |a 9812814566  |q (electronic bk.) 
020 |z 9812814558 
020 |z 9789812814555 
024 8 |a 40016036454 
029 1 |a DEBBG  |b BV042961142 
029 1 |a DEBBG  |b BV044175560 
029 1 |a DEBSZ  |b 397547218 
029 1 |a DEBSZ  |b 423747584 
029 1 |a DEBSZ  |b 456526595 
029 1 |a NZ1  |b 15912618 
035 |a (OCoLC)820944529  |z (OCoLC)960207363  |z (OCoLC)961653451  |z (OCoLC)962647482  |z (OCoLC)966458573  |z (OCoLC)988417486  |z (OCoLC)992092075  |z (OCoLC)1037710035  |z (OCoLC)1038687964  |z (OCoLC)1045476733  |z (OCoLC)1086432880  |z (OCoLC)1153519111  |z (OCoLC)1193009051  |z (OCoLC)1282306854 
050 4 |a Q325.5 
072 7 |a COM  |x 005030  |2 bisacsh 
072 7 |a COM  |x 004000  |2 bisacsh 
082 0 4 |a 006.31  |2 22 
084 |a *68T05  |2 msc 
084 |a 54.72  |2 bcl 
084 |a 68-01  |2 msc 
084 |a 68P05  |2 msc 
084 |a ST 302  |2 rvk 
049 |a UAMI 
100 1 |a Gärtner, Thomas. 
245 1 0 |a Kernels for structured data /  |c Thomas Gärtner. 
260 |a Singapore ;  |a Hackensack, N.J. :  |b World Scientific Pub. Co.,  |c ©2008. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Series in machine perception and artificial intelligence ;  |v v. 72 
504 |a Includes bibliographical references (pages 179-190) and index. 
505 0 |a 1. Why kernels for structured data? 1.1. Supervised machine learning. 1.2. Kernel methods. 1.3. Representing structured data. 1.4. Goals and contributions. 1.5. Outline. 1.6. Bibliographical notes -- 2. Kernel methods in a nutshell. 2.1. Mathematical foundations. 2.2. Recognising patterns with kernels. 2.3. Foundations of kernel methods. 2.4. Kernel machines. 2.5. Summary -- 3. Kernel design. 3.1. General remarks on kernels and examples. 3.2. Kernel functions. 3.3. Introduction to kernels for structured data. 3.4. Prior work. 3.5. Summary -- 4. Basic term kernels. 4.1. Logics for learning. 4.2. Kernels for basic terms. 4.3. Multi-instance learning. 4.4. Related work. 4.5. Applications and experiments -- 5. Graph kernels. 5.1. Motivation and approach. 5.2. Labelled directed graphs. 5.3. Complete graph kernels. 5.4. Walk kernels. 5.5. Cyclic pattern kernels. 5.6. Related work. 5.7. Relational reinforcement learning. 5.8. Molecule classification. 5.9 Summary -- 6. Conclusions. 
520 |a This book provides a unique treatment of an important area of machine learning and answers the question of how kernel methods can be applied to structured data. Kernel methods are a class of state-of-the-art learning algorithms that exhibit excellent learning results in several application domains. Originally, kernel methods were developed with data in mind that can easily be embedded in a Euclidean vector space. Much real-world data does not have this property but is inherently structured. An example of such data, often consulted in the book, is the (2D) graph structure of molecules formed by their atoms and bonds. The book guides the reader from the basics of kernel methods to advanced algorithms and kernel design for structured data. It is thus useful for readers who seek an entry point into the field as well as experienced researchers. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Machine learning. 
650 0 |a Kernel functions. 
650 6 |a Apprentissage automatique. 
650 6 |a Noyaux (Mathématiques) 
650 7 |a COMPUTERS  |x Enterprise Applications  |x Business Intelligence Tools.  |2 bisacsh 
650 7 |a COMPUTERS  |x Intelligence (AI) & Semantics.  |2 bisacsh 
650 7 |a Kernel functions  |2 fast 
650 7 |a Machine learning  |2 fast 
650 7 |a Maschinelles Lernen  |2 gnd 
758 |i has work:  |a Kernels for structured data (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFHWxybchVbH37CKpWhXHP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |c Original  |z 9812814558  |z 9789812814555  |w (DLC) 2009277142  |w (OCoLC)228425525 
830 0 |a Series in machine perception and artificial intelligence ;  |v v. 72. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1193194  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26422512 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1193194 
938 |a ebrary  |b EBRY  |n ebr10688106 
938 |a EBSCOhost  |b EBSC  |n 521165 
938 |a YBP Library Services  |b YANK  |n 9975188 
994 |a 92  |b IZTAP