Cargando…

Fragmentation processes : topics in atomic and molecular physics /

"Revolutionary advances in experimental techniques and spectacular increases in computer power over recent years have enabled researchers to develop a much more profound understanding of the atomic few-body problem. One area of intense focus has been the study of fragmentation processes. Coveri...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Whelan, Colm T. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2012.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Contents
  • Contributors
  • Preface
  • 1 Direct and resonant double photoionization: from atoms to solids
  • 1.1 Introduction
  • 1.2 Direct double photoionization
  • 1.2.1 The He atom
  • 1.2.2 The H2 molecule and the four-body problem
  • 1.2.3 Direct DPI in solids and surfaces
  • 1.3 Indirect double photoionization
  • 1.3.1 Auger photoelectron coincidence spectroscopy (APECS) applied to molecules
  • 1.3.2 Auger photoelectron coincidence spectroscopy(APECS) applied to solids
  • 1.3.3 Interference and coherence effects in indirect double photoionization
  • 1.4 Conclusions
  • References
  • 2 The application of propagating exterior complex scaling to atomic collisions
  • 2.1 Introduction
  • 2.2 Introduction to exterior complex scaling
  • 2.2.1 A one-dimensional example
  • 2.2.2 Numerical method: propagating exterior complex scaling
  • 2.3 Application of ECS to electron-hydrogen scattering
  • 2.3.1 Extracting scattering amplitudes from surface integrals
  • 2.3.2 Propagating exterior complex scaling considerations
  • 2.4 Scattering in electron-hydrogen system
  • 2.5 Exterior complex scaling for electron-helium scattering
  • 2.5.1 Extracting scattering amplitudes
  • 2.5.2 S-wave model for electron-helium scattering
  • 2.6 Summary and outlook for the future
  • References
  • 3 Fragmentation of molecular-ion beams in intense ultrashort laser pulses
  • 3.1 Introduction
  • 3.2 Experimental method
  • 3.2.1 Laser
  • 3.2.2 Ion beam
  • 3.2.3 Crossing the laser and ion beams
  • 3.2.4 Coincidence beam-fragment measurements
  • 3.2.5 Coincidence 3D momentum imaging of beam fragments
  • 3.3 Benchmark molecules
  • 3.3.1 One electron diatomic molecule
  • H2+
  • 3.3.2 Simplest polyatomic molecule
  • H3+
  • 3.4 Complex and/or unique molecular ions
  • 3.4.1 Vibrationally cold molecular ions
  • CO2+
  • 3.4.2 Vibrationally semi-cold molecular ions
  • NO2+.
  • 3.4.3 Other complex molecular ions
  • 3.5 Summary and outlook
  • References
  • 4 Atoms with one and two active electrons in strong laser fields
  • 4.1 Introduction
  • 4.2 Theoretical model
  • 4.3 Two-photon double ionization of helium
  • 4.4 DC-assisted double photoionization of He and H-
  • 4.5 Strong-field ionization of lithium and hydrogen
  • 4.6 High harmonics generation
  • 4.7 Time delay in atomic photoionization
  • References
  • 5 Experimental aspects of ionization studies by positron and positronium impact
  • 5.1 Introduction
  • 5.2 Integral cross sections for positron impact ionization
  • 5.3 Differential cross sections for positron impact ionization
  • 5.4 Positronium-induced fragmentation
  • 5.5 Conclusions and outlook
  • References
  • 6 (e,2e) spectroscopy spectroscopy using fragmentation processes
  • 6.1 Introduction
  • 6.2 Background
  • 6.3 Theory
  • 6.4 Electron momentum spectroscopy results
  • 6.5 Low-energy (e,2e) results
  • 6.6 Conclusion
  • References
  • 7 A coupled pseudostate approach to the calculation of ion-atom fragmentation processes
  • 7.1 Introduction
  • 7.2 Theory
  • 7.2.1 The impact parameter method and extraction of the differential motion of the projectile
  • 7.2.2 Extracting the differential motion of the ejected electron
  • 7.3 Antiproton-induced ionization
  • References
  • 8 Electron impact ionization using (e,2e) coincidence techniques from threshold to intermediate energies
  • 8.1 Introduction
  • 8.1.1 Description of the experimental coincidence technique
  • 8.1.2 (e,2e) experiments near threshold
  • 8.1.3 (e,2e) experiments from threshold to intermediate energies
  • 8.1.4 Summary
  • 8.2 Experimental methods and techniques
  • 8.2.1 Materials
  • 8.2.2 Design of the electron gun and analyzers
  • 8.2.3 Example: the (e,2e) spectrometer in Manchester
  • 8.2.4 Multi-detection
  • the COLTRIMS reaction microscope.
  • 8.3 Theoretical models
  • 8.3.1 Near threshold
  • 8.3.2 The intermediate energy regime
  • 8.4 Atomic targets
  • 8.4.1 Near-threshold measurements on helium
  • 8.4.2 Measurements on helium at intermediate energies
  • 8.4.3 Measurements on the noble gases in the perpendicular plane
  • 8.5 Molecular targets
  • 8.5.1 Measurements from H2
  • 8.5.2 Measurements from polyatomic molecules
  • 8.6 Experiments from laser-aligned atoms
  • 8.6.1 The laser excitation process
  • 8.6.2 Ionization from laser-excited magnesium
  • 8.7 Future work and conclusions
  • References
  • 9 (e,2e) processes on atomic inner shells
  • 9.1 (e,2e) processes
  • an overview
  • 9.2 Non-relativistic theory
  • 9.3 The distorted wave Born approximation
  • 9.3.1 Geometries
  • 9.3.2 The ionization of the 2p state of argon
  • 9.4 Inner-shell ionization of heavy metal targets at relativisticimpact energies
  • 9.4.1 Relativistic, distorted wave Born approximation
  • 9.5 General features of the cross section
  • 9.5.1 Coplanar asymmetric-Ehrhardt-geometry
  • 9.5.2 Coplanar symmetric-Pochat-geometry
  • 9.6 Special features
  • 9.6.1 Spin-dependent effects using unpolarized beams on unpolarized targets
  • 9.6.2 Distortion effects
  • References
  • 10 Spin-resolved atomic (e,2e) processes
  • 10.1 Introduction
  • 10.2 Experimental considerations
  • 10.2.1 Definition of measured and derived parameters
  • 10.2.2 Generation of spin-polarized electron beams
  • 10.3 Low-Z targets and low electron impact energies
  • 10.4 High-Z targets and low electron impact energies
  • 10.5 High-Z targets and high electron impact energies
  • 10.6 Longitudinally polarized electrons
  • 10.7 Conclusion
  • References
  • Index.