Cargando…

Advanced dynamic-system simulation : model -replication and Monte Carlo Studies /

"This book introduces Dynamic-system Simulation with a main emphasis on OPEN DESIRE and DESIRE software. The book includes eight comprehensive chapters amounting to approximately 250 pages, as well as includes three appendices housing information on Radial-basis-function, Fuzzy-basis-function N...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Korn, Granino A. (Granino Arthur), 1922-2013
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, New Jersey : Wiley, [2013]
Edición:Second edition.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn819741932
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 121128s2013 nju ob 001 0 eng
010 |a  2012047703 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d EBLCP  |d DG1  |d N$T  |d YDXCP  |d E7B  |d CDX  |d OCLCF  |d DEBSZ  |d UKDOC  |d RECBK  |d OCLCQ  |d COO  |d DEBBG  |d COCUF  |d DG1  |d MOR  |d CCO  |d LIP  |d PIFAG  |d MERUC  |d OCLCQ  |d ZCU  |d U3W  |d OCLCQ  |d STF  |d WRM  |d NRAMU  |d ICG  |d OCLCA  |d INT  |d VT2  |d AU@  |d OCLCQ  |d WYU  |d OCLCQ  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d HS0  |d OCLCQ  |d UX1  |d UKCRE  |d OCLCO  |d VHC  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 837947610  |a 864914520  |a 961569968  |a 962708468  |a 988523335  |a 992094524  |a 1037721396  |a 1038624761  |a 1045511940  |a 1084342570  |a 1101725452  |a 1109062658  |a 1148098119  |a 1153475389  |a 1162269562  |a 1227631705  |a 1244443501  |a 1290111962  |a 1294613995  |a 1303450374 
020 |a 9781118527443  |q (ePub) 
020 |a 1118527445  |q (ePub) 
020 |a 9781118527450  |q (MobiPocket) 
020 |a 1118527453  |q (MobiPocket) 
020 |a 9781118527467  |q (Adobe PDF) 
020 |a 1118527461  |q (Adobe PDF) 
020 |a 9781118527412  |q (electronic bk.) 
020 |a 1118527410  |q (electronic bk.) 
020 |z 9781118397350  |q (hardback) 
020 |a 1299189873 
020 |a 9781299189874 
020 |a 1118397355 
020 |a 9781118397350 
028 0 1 |a EB00063821  |b Recorded Books 
029 1 |a AU@  |b 000053300144 
029 1 |a CHBIS  |b 009914517 
029 1 |a CHNEW  |b 000940865 
029 1 |a CHVBK  |b 480211353 
029 1 |a DEBBG  |b BV043395215 
029 1 |a DEBBG  |b BV044172847 
029 1 |a DEBSZ  |b 397479638 
029 1 |a DEBSZ  |b 431338221 
029 1 |a DEBSZ  |b 449346684 
029 1 |a DEBSZ  |b 485029286 
029 1 |a NZ1  |b 15341629 
029 1 |a AU@  |b 000073095597 
035 |a (OCoLC)819741932  |z (OCoLC)837947610  |z (OCoLC)864914520  |z (OCoLC)961569968  |z (OCoLC)962708468  |z (OCoLC)988523335  |z (OCoLC)992094524  |z (OCoLC)1037721396  |z (OCoLC)1038624761  |z (OCoLC)1045511940  |z (OCoLC)1084342570  |z (OCoLC)1101725452  |z (OCoLC)1109062658  |z (OCoLC)1148098119  |z (OCoLC)1153475389  |z (OCoLC)1162269562  |z (OCoLC)1227631705  |z (OCoLC)1244443501  |z (OCoLC)1290111962  |z (OCoLC)1294613995  |z (OCoLC)1303450374 
042 |a pcc 
050 0 0 |a QA402 
072 7 |a SCI  |x 012000  |2 bisacsh 
082 0 0 |a 003/.85  |2 23 
084 |a COM072000  |2 bisacsh 
049 |a UAMI 
100 1 |a Korn, Granino A.  |q (Granino Arthur),  |d 1922-2013. 
245 1 0 |a Advanced dynamic-system simulation :  |b model -replication and Monte Carlo Studies /  |c by Granino A. Korn. 
250 |a Second edition. 
264 1 |a Hoboken, New Jersey :  |b Wiley,  |c [2013] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a "This book introduces Dynamic-system Simulation with a main emphasis on OPEN DESIRE and DESIRE software. The book includes eight comprehensive chapters amounting to approximately 250 pages, as well as includes three appendices housing information on Radial-basis-function, Fuzzy-basis-function Networks, and CLEARN Algorithm. In addition, a CD will be packaged with each book, containing complete binary OPEN DESIRE modeling/simulation program packages for personal-computer LINUX and MS Windows, DESIRE examples, source code and a comprehensive, indexed reference manual. The second edition offers a complete update of all material, boasting two completely new chapters on fast simulation of neural networks"--  |c Provided by publisher. 
520 |a "This book introduces Dynamic-system Simulation with a main emphasis on OPEN DESIRE and DESIRE software"--  |c Provided by publisher. 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record and CIP data provided by publisher. 
505 0 0 |g Machine generated contents note:  |g ch. 1  |t Dynamic-System Models And Simulation --  |t Simulation Is Experimentation With Models --  |g 1-1.  |t Simulation and Computer Programs --  |g 1-2.  |t Dynamic-System Models --  |g (a).  |t Difference-Equation Models --  |g (b).  |t Differential-Equation Models --  |g (c).  |t Discussion --  |g 1-3.  |t Experiment Protocols Define Simulation Studies --  |g 1-4.  |t Simulation Software --  |g 1-5.  |t Fast Simulation Program for Interactive Modeling --  |t Anatomy Of A Simulation Run --  |g 1-6.  |t Dynamic-System Time Histories Are Sampled Periodically --  |g 1-7.  |t Numerical Integration --  |g (a).  |t Euler Integration --  |g (b).  |t Improved Integration Rules --  |g 1-8.  |t Sampling Times and Integration Steps --  |g 1-9.  |t Sorting Defined-Variable Assignments --  |t Simple Application Programs --  |g 1-10.  |t Oscillators and Computer Displays --  |g (a).  |t Linear Oscillator --  |g (b).  |t Nonlinear Oscillator: Duffing's Differential Equation --  |g 1-11.  |t Space-Vehicle Orbit Simulation with Variable-Step Integration --  |g 1-12.  |t Population-Dynamics Model --  |g 1-13.  |t Splicing Multiple Simulation Runs: Billiard-Ball Simulation --  |t Inroduction To Control-System Simulation --  |g 1-14.  |t Electrical Servomechanism with Motor-Field Delay and Saturation --  |g 1-15.  |t Control-System Frequency Response --  |g 1-16.  |t Simulation of a Simple Guided Missile --  |g (a).  |t Guided Torpedo --  |g (b).  |t Complete Torpedo-Simulation Program --  |t Stop And Look --  |g 1-17.  |t Simulation in the Real World: A Word of Caution --  |t References --  |g ch. 2  |t Models With Difference Equations, Limiters, And Switches --  |t Sampled-Data Systems And Difference Equations --  |g 2-1.  |t Sampled-Data Difference-Equation Systems --  |g (a).  |t Introduction --  |g (b).  |t Difference Equations --  |g (c).  |t Minefield of Possible Errors --  |g 2-2.  |t Solving Systems of First-Order Difference Equations --  |g (a).  |t General Difference-Equation Model --  |g (b).  |t Simple Recurrence Relations --  |g 2-3.  |t Models Combining Differential Equations and Sampled-Data Operations --  |g 2-4.  |t Simple Example --  |g 2-5.  |t Initializing and Resetting Sampled-Data Variables --  |t Two Mixed Continuous/Sampled-Data Systems --  |g 2-6.  |t Guided Torpedo with Digital Control --  |g 2-7.  |t Simulation of a Plant with a Digital PID Controller --  |t Dynamic-System Models With Limiters And Switches --  |g 2-8.  |t Limiters, Switches, and Comparators --  |g (a).  |t Limiter Functions --  |g (b).  |t Switching Functions and Comparators --  |g 2-9.  |t Integration of Switch and Limiter Outputs, Event Prediction, and Display Problems --  |g 2-10.  |t Using Sampled-Data Assignments --  |g 2-11.  |t Using the step Operator and Heuristic Integration-Step Control --  |g 2-12.  |t Example: Simulation of a Bang-Bang Servomechanism --  |g 2-13.  |t Limiters, Absolute Values, and Maximum/Minimum Selection --  |g 2-14.  |t Output-Limited Integration --  |g 2-15.  |t Modeling Signal Quantization --  |t Efficient Device Models Using Recursive Assignments --  |g 2-16.  |t Recursive Switching and Limiter Operations --  |g 2-17.  |t Track/Hold Simulation --  |g 2-18.  |t Maximum-Value and Minimum-Value Holding --  |g 2-19.  |t Simple Backlash and Hysteresis Models --  |g 2-20.  |t Comparator with Hysteresis (Schmitt Trigger) --  |g 2-21.  |t Signal Generators and Signal Modulation --  |t References --  |g ch. 3  |t Fast Vector-Matrix Operations And Submodels --  |t Arrays, Vectors, And Matrices --  |g 3-1.  |t Arrays and Subscripted Variables --  |g (a).  |t Improved Modeling --  |g (b).  |t Array Declarations, Vectors, and Matrices --  |g (c).  |t State-Variable Declarations --  |g 3-2.  |t Vector and Matrices in Experiment Protocols --  |g 3-3.  |t Time-History Arrays --  |t Vectors And Model Replication --  |g 3-4.  |t Vector Operations in DYNAMIC Program Segments: The Vectorizing Compiler --  |g (a).  |t Vector Assignments and Vector Expressions --  |g (b).  |t Vector Differential Equations --  |g (c).  |t Vector Sampled-Data Assignments and Difference Equations --  |g 3-5.  |t Matrix-Vector Products in Vector Expressions --  |g (a).  |t Definition --  |g (b).  |t Simple Example: Resonating Oscillators --  |g 3-6.  |t Index-Shift Operation --  |g (a).  |t Definition --  |g (b).  |t Preview of Significant Applications --  |g 3-7.  |t Sorting Vector and Subscripted-Variable Assignments --  |g 3-8.  |t Replication of Dynamic-System Models --  |t More Vector Operations --  |g 3-9.  |t Sums, DOT Products, and Vector Norms --  |g (a).  |t Sums and DOT Products --  |g (b).  |t Euclidean, Taxicab, and Hamming Norms --  |g 3-10.  |t Maximum/Minimum Selection and Masking --  |g (a).  |t Maximum/Minimum Selection --  |g (b).  |t Masking Vector Expressions --  |t Vector Equivalence Declarations Simplify Models --  |g 3-11.  |t Subvectors --  |g 3-12.  |t Matrix-Vector Equivalence --  |t Matrix Operations In Dynamic-System Models --  |g 3-13.  |t Simple Matrix Assignments --  |g 3-14.  |t Two-Dimensional Model Replication --  |g (a).  |t Matrix Expressions and DOT Products --  |g (b).  |t Matrix Differential Equations --  |g (c).  |t Matrix Difference Equations --  |t Vectors In Physics And Control-System Problems --  |g 3-15.  |t Vectors in Physics Problems --  |g 3-16.  |t Vector Model of a Nuclear Reactor --  |g 3-17.  |t Linear Transformations and Rotation Matrices --  |g 3-18.  |t State-Equation Models of Linear Control Systems --  |t User-Defined Functions And Submodels --  |g 3-19.  |t Introduction --  |g 3-20.  |t User-Defined Functions --  |g 3-21.  |t Submodel Declaration and Invocation --  |g 3-22.  |t Dealing with Sampled-Data Assignments, Limiters, and Switches --  |t References --  |g ch. 4  |t Efficient Parameter-Influence Studies And Statistics Computation --  |t Model Replication Simplifies Parameter-Influence Studies --  |g 4-1.  |t Exploring the Effects of Parameter Changes --  |g 4-2.  |t Repeated Simulation Runs Versus Model Replication --  |g (a).  |t Simple Repeated-Run Study --  |g (b).  |t Model Replication (Vectorization) --  |g 4-3.  |t Programming Parameter-Influence Studies --  |g (a).  |t Measures of System Performance --  |g (b).  |t Program Design --  |g (c).  |t Two-Dimensional Model Replication --  |g (d).  |t Cross-Plotting Results --  |g (e).  |t Maximum/Minimum Selection --  |g (f).  |t Iterative Parameter Optimization --  |t Statistics --  |g 4-4.  |t Random Data and Statistics --  |g 4-5.  |t Sample Averages and Statistical Relative Frequencies --  |t Computing Statistics By Vector Averaging --  |g 4-6.  |t Fast Computation of Sample Averages --  |g 4-7.  |t Fast Probability Estimation --  |g 4-8.  |t Fast Probability-Density Estimation --  |g (a).  |t Simple Probability-Density Estimate --  |g (b).  |t Triangle and Parzen Windows --  |g (c).  |t Computation and Display of Parzen-Window Estimates --  |g 4-9.  |t Sample-Range Estimation --  |t Replicated Averages Generate Sampling Distributions --  |g 4-10.  |t Computing Statistics by Time Averaging --  |g 4-11.  |t Sample Replication and Sampling-Distribution Statistics --  |g (a).  |t Introduction --  |g (b).  |t Demonstrations of Empirical Laws of Large Numbers --  |g (c).  |t Counterexample: Fat-Tailed Distribution --  |t Random-Process Simulation --  |g 4-12.  |t Random Processes and Monte Carlo Simulation --  |g 4-13.  |t Modeling Random Parameters and Random Initial Values --  |g 4-14.  |t Sampled-Data Random Processes --  |g 4-15.  |t "Continuous" Random Processes --  |g (a).  |t Modeling Continuous Noise --  |g (b).  |t Continuous Time Averaging --  |g (c).  |t Correlation Functions and Spectral Densities --  |g 4-16.  |t Problems with Simulated Noise --  |t Simple Monte Carlo Experiments --  |g 4-17.  |t Introduction --  |g 4-18.  |t Gambling Returns --  |g 4-19.  |t Vectorized Monte Carlo Study of a Continuous Random Walk --  |t References --  |g ch. 
505 0 0 |t 5  |t Monte Carlo Simulation Of Real Dynamic Systems --  |t Introduction --  |g 5-1.  |t Survey --  |t Repeated-Run Monte Carlo Simulation --  |g 5-2.  |t End-of-Run Statistics for Repeated Simulation Runs --  |g 5-3.  |t Example: Effects of Gun-Elevation Errors on a 1776 Cannnonball Trajectory --  |g 5-4.  |t Sequential Monte Carlo Simulation --  |t Vectorized Monte Carlo Simulation --  |g 5-5.  |t Vectorized Monte Carlo Simulation of the 1776 Cannon Shot --  |g 5-6.  |t Combined Vectorized and Repeated-Run Monte Carlo Simulation --  |g 5-7.  |t Interactive Monte Carlo Simulation: Computing Runtime Histories of Statistics with DYNAMIC-Segment DOT Operations --  |g 5-8.  |t Example: Torpedo Trajectory Dispersion --  |t Simulation Of Noisy Control Systems --  |g 5-9.  |t Monte Carlo Simulation of a Nonlinear Servomechanism: A Noise-Input Test --  |g 5-10.  |t Monte Carlo Study of Control-System Errors Caused by Noise --  |t Additional Topics --  |g 5-11.  |t Monte Carlo Optimization --  |g 5-12.  |t Convenient Heuristic Method for Testing Pseudorandom Noise --  |g 5-13.  |t Alternative to Monte Carlo Simulation --  |g (a).  |t Introduction --  |g (b).  |t Dynamic Systems with Random Perturbations --  |g (c).  |t Mean-Square Errors in Linearized Systems --  |t References --  |g ch. 6  |t Vector Models Of Neural Networks --  |t Artificial Neural Networks --  |g 6-1.  |t Introduction --  |g 6-2.  |t Artificial Neural Networks --  |g 6-3.  |t Static Neural Networks: Training, Validation, and Applications --  |g 6-4.  |t Dynamic Neural Networks --  |t Simple Vector Assignments Model Neuron Layers --  |g 6-5.  |t Neuron-Layer Declarations and Neuron Operations --  |g 6-6.  |t Neuron-Layer Concatenation Simplifies Bias Inputs --  |g 6-7.  |t Normalizing and Contrast-Enhancing Layers --  |g (a).  |t Pattern Normalization --  |g (b).  |t Contrast Enhancement: Softmax and Thresholding --  |g 6-8.  |t Multilayer Networks --  |g 6-9.  |t Exercising a Neural-Network Model --  |g (a).  |t Computing Successive Neuron-Layer Outputs --  |g (b).  |t Input from Pattern-Row Matrices --  |g (c).  |t Input from Text Files and Spreadsheets --  |t SUPERVISED TRAINING FOR REGRESSION --  |g 6-10.  |t Mean-Square Regression --  |g (a).  |t Problem Statement --  |g (b).  |t Linear Mean-Square Regression and the Delta Rule --  |g (c).  |t Nonlinear Neuron Layers and Activation-Function Derivatives --  |g (d).  |t Error-Measure Display --  |g 6-11.  |t Backpropagation Networks --  |g (a).  |t Generalized Delta Rule --  |g (b).  |t Momentum Learning --  |g (c).  |t Simple Example --  |g (d).  |t Classical XOR Problem and Other Examples --  |t More Neural-Network Models --  |g 6-12.  |t Functional-Link Networks --  |g 6-13.  |t Radial-Basis-Function Networks --  |g (a).  |t Basis-Function Expansion and Linear Optimization --  |g (b).  |t Radial Basis Functions --  |g 6-14.  |t Neural-Network Submodels. 
505 0 0 |g Note continued:  |t Pattern Classification --  |g 6-15.  |t Introduction --  |g 6-16.  |t Classifier Input from Files --  |g 6-17.  |t Classifier Networks --  |g (a).  |t Simple Linear Classifiers --  |g (b).  |t Softmax Classifiers --  |g (c).  |t Backpropagation Classifiers --  |g (d).  |t Functional-Link Classifiers --  |g (e).  |t Other Classsifiers --  |g 6-18.  |t Examples --  |g (a).  |t Classification Using an Empirical Database: Fisher's Iris Problem --  |g (b).  |t Image-Pattern Recognition and Associative Memory --  |t Pattern Simplification --  |g 6-19.  |t Pattern Centering --  |g 6-20.  |t Feature Reduction --  |g (a).  |t Bottleneck Layers and Encoders --  |g (b).  |t Principal Components --  |t Network-Training Problems --  |g 6-21.  |t Learning-Rate Adjustment --  |g 6-22.  |t Overfitting and Generalization --  |g (a).  |t Introduction --  |g (b).  |t Adding Noise --  |g (c).  |t Early Stopping --  |g (d).  |t Regularization --  |g 6-23.  |t Beyond Simple Gradient Descent --  |t Unsupervised Competitive-Layer Classifiers --  |g 6-24.  |t Template-Pattern Matching and the CLEARN Operation --  |g (a).  |t Template Patterns and Template Matrix --  |g (b).  |t Matching Known Template Patterns --  |g (c).  |t Template-Pattern Training --  |g (d).  |t Correlation Training --  |g 6-25.  |t Learning with Conscience --  |g 6-26.  |t Competitive-Learning Experiments --  |g (a).  |t Pattern Classification --  |g (b).  |t Vector Quantization --  |g 6-27.  |t Simplified Adaptive-Resonance Emulation --  |t Supervised Competitive Learning --  |g 6-28.  |t LVQ Algorithm for Two-Way Classification --  |g 6-29.  |t Counterpropagation Networks --  |t Examples Of Clearn Classifiers --  |g 6-30.  |t Recognition of Known Patterns --  |g (a).  |t Image Recognition --  |g (b).  |t Fast Solution of the Spiral Benchmark Problem --  |g 6-31.  |t Learning Unknown Patterns --  |t References --  |g ch. 7  |t Dynamic Neural Networks --  |t Introduction --  |g 7-1.  |t Dynamic Versus Static Neural Networks --  |g 7-2.  |t Applications of Dynamic Neural Networks --  |g 7-3.  |t Simulations Combining Neural Networks and Differential-Equation Models --  |t Neural Networks With Delay-Line Input --  |g 7-4.  |t Introduction --  |g 7-5.  |t Delay-Line Model --  |g 7-6.  |t Delay-Line-Input Networks --  |g (a).  |t Linear Combiners --  |g (b).  |t One-Layer Nonlinear Network --  |g (c).  |t Functional-Link Network --  |g (d).  |t Backpropagation Network with Delay-Line Input --  |g 7-7.  |t Using Gamma Delay Lines --  |t Static Neural Networks Used As Dynamic Networks --  |g 7-8.  |t Introduction --  |g 7-9.  |t Simple Backpropagation Networks --  |t Recurrent Neural Networks --  |g 7-10.  |t Layer-Feedback Networks --  |g 7-11.  |t Simplified Recurrent-Network Models Combine Context and Input Layers --  |g (a).  |t Conventional Model of a Jordan Network --  |g (b).  |t Simplified Jordan-Network Model --  |g (c).  |t Simplified Models for Other Feedback Networks --  |g 7-12.  |t Neural Networks with Feedback Delay Lines --  |g (a).  |t Delay-Line Feedback --  |g (b).  |t Neural Networks with Both Input and Feedback Delay Lines --  |g 7-13.  |t Teacher Forcing --  |t Predictor Networks --  |g 7-14.  |t Off-Line Predictor Training --  |g (a).  |t Off-Line Prediction Using Stored Time Series --  |g (b).  |t Off-Line Training System for Online Predictors --  |g (c).  |t Example: Simple Linear Predictor --  |g 7-15.  |t Online Trainng for True Online Prediction --  |g 7-16.  |t Chaotic Time Series for Prediction Experiments --  |g 7-17.  |t Gallery of Predictor Networks --  |t Other Applications Of Dynamic Networks --  |g 7-18.  |t Temporal-Pattern Recognition: Regression and Classification --  |g 7-19.  |t Model Matching --  |g (a).  |t Introduction --  |g (b).  |t Example: Program for Matching Narendra's Plant Model --  |t Miscellaneous Topics --  |g 7-20.  |t Biological-Network Software --  |t References --  |g ch. 8  |t More Appications Of Vector Models --  |t Vectorized Simulation With Logarithmic Plots --  |g 8-1.  |t EUROSIM No. 1 Benchmark Problem --  |g 8-2.  |t Vectorized Simulation with Logarithmic Plots --  |t Modeling Fuzzy-Logic Function Generators --  |g 8-3.  |t Rule Tables Specify Heuristic Functions --  |g 8-4.  |t Fuzzy-Set Logic --  |g (a).  |t Fuzzy Sets and Membership Functions --  |g (b).  |t Fuzzy Intersections and Unions --  |g (c).  |t Joint Membership Functions --  |g (d).  |t Normalized Fuzzy-Set Partitions --  |g 8-5.  |t Fuzzy-Set Rule Tables and Function Generators --  |g 8-6.  |t Simplified Function Generation with Fuzzy Basis Functions --  |g 8-7.  |t Vector Models of Fuzzy-Set Partitions --  |g (a).  |t Gaussian Bumps: Effects of Normalization --  |g (b).  |t Triangle Functions --  |g (c).  |t Smooth Fuzzy-Basis Functions --  |g 8-8.  |t Vector Models for Multidimensional Fuzzy-Set Partitions --  |g 8-9.  |t Example: Fuzzy-Logic Control of a Servomechanism --  |g (a).  |t Problem Statement --  |g (b).  |t Experiment Protocol and Rule Table --  |g (c).  |t DYNAMIC Program Segment and Results --  |t Partial Differential Equations --  |g 8-10.  |t Method of Lines --  |g 8-11.  |t Vectorized Method of Lines --  |g (a).  |t Introduction --  |g (b).  |t Using Differentiation Operators --  |g (c).  |t Numerical Problems --  |g 8-12.  |t Heat-Conduction Equation in Cylindrical Coordinates --  |g 8-13.  |t Generalizations --  |g 8-14.  |t Simple Heat-Exchanger Model --  |t Fourier Analysis And Linear-System Dynamics --  |g 8-15.  |t Introduction --  |g 8-16.  |t Function-Table Lookup and Interpolation --  |g 8-17.  |t Fast-Fourier-Transform Operations --  |g 8-18.  |t Impulse and Freqency Response of a Linear Servomechanism --  |g 8-19.  |t Compact Vector Models of Linear Dynamic Systems --  |g (a).  |t Using the Index-Shift Operation with Analog Integration --  |g (b).  |t Linear Sampled-Data Systems --  |g (c).  |t Example: Digital Comb Filter --  |t Replication Of Agroecological Models On Map Grids --  |g 8-20.  |t Geographical Information System --  |g 8-21.  |t Modeling the Evolution of Landscape Features --  |g 8-22.  |t Matrix Operations on a Map Grid --  |t References --  |t APPENDIX: ADDITIONAL REFERENCE MATERIAL --  |g A-1.  |t Example of a Radial-Basis-Function Network --  |g A-2.  |t Fuzzy-Basis-Function Network. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a System analysis  |x Simulation methods. 
650 0 |a Open source software. 
650 0 |a Computer software  |x Development. 
650 6 |a Analyse de systèmes  |x Méthodes de simulation. 
650 6 |a Logiciels libres. 
650 7 |a COMPUTERS  |x Computer Simulation.  |2 bisacsh 
650 7 |a Computer software  |x Development  |2 fast 
650 7 |a Open source software  |2 fast 
650 7 |a System analysis  |x Simulation methods  |2 fast 
650 7 |a Civil & Environmental Engineering.  |2 hilcc 
650 7 |a Engineering & Applied Sciences.  |2 hilcc 
650 7 |a Operations Research.  |2 hilcc 
776 0 8 |i Print version:  |a Korn, Granino A. (Granino Arthur), 1922-  |t Advanced dynamic-system simulation.  |b Second edition.  |d Hoboken, New Jersey : John Wiley & Sons Inc., [2012]  |z 9781118397350  |w (DLC) 2012034771 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1124314  |z Texto completo 
938 |a 123Library  |b 123L  |n 64537 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24971489 
938 |a Coutts Information Services  |b COUT  |n 24807464 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1124314 
938 |a ebrary  |b EBRY  |n ebr10658428 
938 |a EBSCOhost  |b EBSC  |n 536083 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00063821 
938 |a YBP Library Services  |b YANK  |n 10196184 
938 |a YBP Library Services  |b YANK  |n 9662004 
938 |a YBP Library Services  |b YANK  |n 13035617 
994 |a 92  |b IZTAP