|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn819741932 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
121128s2013 nju ob 001 0 eng |
010 |
|
|
|a 2012047703
|
040 |
|
|
|a DLC
|b eng
|e rda
|e pn
|c DLC
|d EBLCP
|d DG1
|d N$T
|d YDXCP
|d E7B
|d CDX
|d OCLCF
|d DEBSZ
|d UKDOC
|d RECBK
|d OCLCQ
|d COO
|d DEBBG
|d COCUF
|d DG1
|d MOR
|d CCO
|d LIP
|d PIFAG
|d MERUC
|d OCLCQ
|d ZCU
|d U3W
|d OCLCQ
|d STF
|d WRM
|d NRAMU
|d ICG
|d OCLCA
|d INT
|d VT2
|d AU@
|d OCLCQ
|d WYU
|d OCLCQ
|d DKC
|d OCLCQ
|d UKAHL
|d OCLCQ
|d HS0
|d OCLCQ
|d UX1
|d UKCRE
|d OCLCO
|d VHC
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 837947610
|a 864914520
|a 961569968
|a 962708468
|a 988523335
|a 992094524
|a 1037721396
|a 1038624761
|a 1045511940
|a 1084342570
|a 1101725452
|a 1109062658
|a 1148098119
|a 1153475389
|a 1162269562
|a 1227631705
|a 1244443501
|a 1290111962
|a 1294613995
|a 1303450374
|
020 |
|
|
|a 9781118527443
|q (ePub)
|
020 |
|
|
|a 1118527445
|q (ePub)
|
020 |
|
|
|a 9781118527450
|q (MobiPocket)
|
020 |
|
|
|a 1118527453
|q (MobiPocket)
|
020 |
|
|
|a 9781118527467
|q (Adobe PDF)
|
020 |
|
|
|a 1118527461
|q (Adobe PDF)
|
020 |
|
|
|a 9781118527412
|q (electronic bk.)
|
020 |
|
|
|a 1118527410
|q (electronic bk.)
|
020 |
|
|
|z 9781118397350
|q (hardback)
|
020 |
|
|
|a 1299189873
|
020 |
|
|
|a 9781299189874
|
020 |
|
|
|a 1118397355
|
020 |
|
|
|a 9781118397350
|
028 |
0 |
1 |
|a EB00063821
|b Recorded Books
|
029 |
1 |
|
|a AU@
|b 000053300144
|
029 |
1 |
|
|a CHBIS
|b 009914517
|
029 |
1 |
|
|a CHNEW
|b 000940865
|
029 |
1 |
|
|a CHVBK
|b 480211353
|
029 |
1 |
|
|a DEBBG
|b BV043395215
|
029 |
1 |
|
|a DEBBG
|b BV044172847
|
029 |
1 |
|
|a DEBSZ
|b 397479638
|
029 |
1 |
|
|a DEBSZ
|b 431338221
|
029 |
1 |
|
|a DEBSZ
|b 449346684
|
029 |
1 |
|
|a DEBSZ
|b 485029286
|
029 |
1 |
|
|a NZ1
|b 15341629
|
029 |
1 |
|
|a AU@
|b 000073095597
|
035 |
|
|
|a (OCoLC)819741932
|z (OCoLC)837947610
|z (OCoLC)864914520
|z (OCoLC)961569968
|z (OCoLC)962708468
|z (OCoLC)988523335
|z (OCoLC)992094524
|z (OCoLC)1037721396
|z (OCoLC)1038624761
|z (OCoLC)1045511940
|z (OCoLC)1084342570
|z (OCoLC)1101725452
|z (OCoLC)1109062658
|z (OCoLC)1148098119
|z (OCoLC)1153475389
|z (OCoLC)1162269562
|z (OCoLC)1227631705
|z (OCoLC)1244443501
|z (OCoLC)1290111962
|z (OCoLC)1294613995
|z (OCoLC)1303450374
|
042 |
|
|
|a pcc
|
050 |
0 |
0 |
|a QA402
|
072 |
|
7 |
|a SCI
|x 012000
|2 bisacsh
|
082 |
0 |
0 |
|a 003/.85
|2 23
|
084 |
|
|
|a COM072000
|2 bisacsh
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Korn, Granino A.
|q (Granino Arthur),
|d 1922-2013.
|
245 |
1 |
0 |
|a Advanced dynamic-system simulation :
|b model -replication and Monte Carlo Studies /
|c by Granino A. Korn.
|
250 |
|
|
|a Second edition.
|
264 |
|
1 |
|a Hoboken, New Jersey :
|b Wiley,
|c [2013]
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
520 |
|
|
|a "This book introduces Dynamic-system Simulation with a main emphasis on OPEN DESIRE and DESIRE software. The book includes eight comprehensive chapters amounting to approximately 250 pages, as well as includes three appendices housing information on Radial-basis-function, Fuzzy-basis-function Networks, and CLEARN Algorithm. In addition, a CD will be packaged with each book, containing complete binary OPEN DESIRE modeling/simulation program packages for personal-computer LINUX and MS Windows, DESIRE examples, source code and a comprehensive, indexed reference manual. The second edition offers a complete update of all material, boasting two completely new chapters on fast simulation of neural networks"--
|c Provided by publisher.
|
520 |
|
|
|a "This book introduces Dynamic-system Simulation with a main emphasis on OPEN DESIRE and DESIRE software"--
|c Provided by publisher.
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record and CIP data provided by publisher.
|
505 |
0 |
0 |
|g Machine generated contents note:
|g ch. 1
|t Dynamic-System Models And Simulation --
|t Simulation Is Experimentation With Models --
|g 1-1.
|t Simulation and Computer Programs --
|g 1-2.
|t Dynamic-System Models --
|g (a).
|t Difference-Equation Models --
|g (b).
|t Differential-Equation Models --
|g (c).
|t Discussion --
|g 1-3.
|t Experiment Protocols Define Simulation Studies --
|g 1-4.
|t Simulation Software --
|g 1-5.
|t Fast Simulation Program for Interactive Modeling --
|t Anatomy Of A Simulation Run --
|g 1-6.
|t Dynamic-System Time Histories Are Sampled Periodically --
|g 1-7.
|t Numerical Integration --
|g (a).
|t Euler Integration --
|g (b).
|t Improved Integration Rules --
|g 1-8.
|t Sampling Times and Integration Steps --
|g 1-9.
|t Sorting Defined-Variable Assignments --
|t Simple Application Programs --
|g 1-10.
|t Oscillators and Computer Displays --
|g (a).
|t Linear Oscillator --
|g (b).
|t Nonlinear Oscillator: Duffing's Differential Equation --
|g 1-11.
|t Space-Vehicle Orbit Simulation with Variable-Step Integration --
|g 1-12.
|t Population-Dynamics Model --
|g 1-13.
|t Splicing Multiple Simulation Runs: Billiard-Ball Simulation --
|t Inroduction To Control-System Simulation --
|g 1-14.
|t Electrical Servomechanism with Motor-Field Delay and Saturation --
|g 1-15.
|t Control-System Frequency Response --
|g 1-16.
|t Simulation of a Simple Guided Missile --
|g (a).
|t Guided Torpedo --
|g (b).
|t Complete Torpedo-Simulation Program --
|t Stop And Look --
|g 1-17.
|t Simulation in the Real World: A Word of Caution --
|t References --
|g ch. 2
|t Models With Difference Equations, Limiters, And Switches --
|t Sampled-Data Systems And Difference Equations --
|g 2-1.
|t Sampled-Data Difference-Equation Systems --
|g (a).
|t Introduction --
|g (b).
|t Difference Equations --
|g (c).
|t Minefield of Possible Errors --
|g 2-2.
|t Solving Systems of First-Order Difference Equations --
|g (a).
|t General Difference-Equation Model --
|g (b).
|t Simple Recurrence Relations --
|g 2-3.
|t Models Combining Differential Equations and Sampled-Data Operations --
|g 2-4.
|t Simple Example --
|g 2-5.
|t Initializing and Resetting Sampled-Data Variables --
|t Two Mixed Continuous/Sampled-Data Systems --
|g 2-6.
|t Guided Torpedo with Digital Control --
|g 2-7.
|t Simulation of a Plant with a Digital PID Controller --
|t Dynamic-System Models With Limiters And Switches --
|g 2-8.
|t Limiters, Switches, and Comparators --
|g (a).
|t Limiter Functions --
|g (b).
|t Switching Functions and Comparators --
|g 2-9.
|t Integration of Switch and Limiter Outputs, Event Prediction, and Display Problems --
|g 2-10.
|t Using Sampled-Data Assignments --
|g 2-11.
|t Using the step Operator and Heuristic Integration-Step Control --
|g 2-12.
|t Example: Simulation of a Bang-Bang Servomechanism --
|g 2-13.
|t Limiters, Absolute Values, and Maximum/Minimum Selection --
|g 2-14.
|t Output-Limited Integration --
|g 2-15.
|t Modeling Signal Quantization --
|t Efficient Device Models Using Recursive Assignments --
|g 2-16.
|t Recursive Switching and Limiter Operations --
|g 2-17.
|t Track/Hold Simulation --
|g 2-18.
|t Maximum-Value and Minimum-Value Holding --
|g 2-19.
|t Simple Backlash and Hysteresis Models --
|g 2-20.
|t Comparator with Hysteresis (Schmitt Trigger) --
|g 2-21.
|t Signal Generators and Signal Modulation --
|t References --
|g ch. 3
|t Fast Vector-Matrix Operations And Submodels --
|t Arrays, Vectors, And Matrices --
|g 3-1.
|t Arrays and Subscripted Variables --
|g (a).
|t Improved Modeling --
|g (b).
|t Array Declarations, Vectors, and Matrices --
|g (c).
|t State-Variable Declarations --
|g 3-2.
|t Vector and Matrices in Experiment Protocols --
|g 3-3.
|t Time-History Arrays --
|t Vectors And Model Replication --
|g 3-4.
|t Vector Operations in DYNAMIC Program Segments: The Vectorizing Compiler --
|g (a).
|t Vector Assignments and Vector Expressions --
|g (b).
|t Vector Differential Equations --
|g (c).
|t Vector Sampled-Data Assignments and Difference Equations --
|g 3-5.
|t Matrix-Vector Products in Vector Expressions --
|g (a).
|t Definition --
|g (b).
|t Simple Example: Resonating Oscillators --
|g 3-6.
|t Index-Shift Operation --
|g (a).
|t Definition --
|g (b).
|t Preview of Significant Applications --
|g 3-7.
|t Sorting Vector and Subscripted-Variable Assignments --
|g 3-8.
|t Replication of Dynamic-System Models --
|t More Vector Operations --
|g 3-9.
|t Sums, DOT Products, and Vector Norms --
|g (a).
|t Sums and DOT Products --
|g (b).
|t Euclidean, Taxicab, and Hamming Norms --
|g 3-10.
|t Maximum/Minimum Selection and Masking --
|g (a).
|t Maximum/Minimum Selection --
|g (b).
|t Masking Vector Expressions --
|t Vector Equivalence Declarations Simplify Models --
|g 3-11.
|t Subvectors --
|g 3-12.
|t Matrix-Vector Equivalence --
|t Matrix Operations In Dynamic-System Models --
|g 3-13.
|t Simple Matrix Assignments --
|g 3-14.
|t Two-Dimensional Model Replication --
|g (a).
|t Matrix Expressions and DOT Products --
|g (b).
|t Matrix Differential Equations --
|g (c).
|t Matrix Difference Equations --
|t Vectors In Physics And Control-System Problems --
|g 3-15.
|t Vectors in Physics Problems --
|g 3-16.
|t Vector Model of a Nuclear Reactor --
|g 3-17.
|t Linear Transformations and Rotation Matrices --
|g 3-18.
|t State-Equation Models of Linear Control Systems --
|t User-Defined Functions And Submodels --
|g 3-19.
|t Introduction --
|g 3-20.
|t User-Defined Functions --
|g 3-21.
|t Submodel Declaration and Invocation --
|g 3-22.
|t Dealing with Sampled-Data Assignments, Limiters, and Switches --
|t References --
|g ch. 4
|t Efficient Parameter-Influence Studies And Statistics Computation --
|t Model Replication Simplifies Parameter-Influence Studies --
|g 4-1.
|t Exploring the Effects of Parameter Changes --
|g 4-2.
|t Repeated Simulation Runs Versus Model Replication --
|g (a).
|t Simple Repeated-Run Study --
|g (b).
|t Model Replication (Vectorization) --
|g 4-3.
|t Programming Parameter-Influence Studies --
|g (a).
|t Measures of System Performance --
|g (b).
|t Program Design --
|g (c).
|t Two-Dimensional Model Replication --
|g (d).
|t Cross-Plotting Results --
|g (e).
|t Maximum/Minimum Selection --
|g (f).
|t Iterative Parameter Optimization --
|t Statistics --
|g 4-4.
|t Random Data and Statistics --
|g 4-5.
|t Sample Averages and Statistical Relative Frequencies --
|t Computing Statistics By Vector Averaging --
|g 4-6.
|t Fast Computation of Sample Averages --
|g 4-7.
|t Fast Probability Estimation --
|g 4-8.
|t Fast Probability-Density Estimation --
|g (a).
|t Simple Probability-Density Estimate --
|g (b).
|t Triangle and Parzen Windows --
|g (c).
|t Computation and Display of Parzen-Window Estimates --
|g 4-9.
|t Sample-Range Estimation --
|t Replicated Averages Generate Sampling Distributions --
|g 4-10.
|t Computing Statistics by Time Averaging --
|g 4-11.
|t Sample Replication and Sampling-Distribution Statistics --
|g (a).
|t Introduction --
|g (b).
|t Demonstrations of Empirical Laws of Large Numbers --
|g (c).
|t Counterexample: Fat-Tailed Distribution --
|t Random-Process Simulation --
|g 4-12.
|t Random Processes and Monte Carlo Simulation --
|g 4-13.
|t Modeling Random Parameters and Random Initial Values --
|g 4-14.
|t Sampled-Data Random Processes --
|g 4-15.
|t "Continuous" Random Processes --
|g (a).
|t Modeling Continuous Noise --
|g (b).
|t Continuous Time Averaging --
|g (c).
|t Correlation Functions and Spectral Densities --
|g 4-16.
|t Problems with Simulated Noise --
|t Simple Monte Carlo Experiments --
|g 4-17.
|t Introduction --
|g 4-18.
|t Gambling Returns --
|g 4-19.
|t Vectorized Monte Carlo Study of a Continuous Random Walk --
|t References --
|g ch.
|
505 |
0 |
0 |
|t 5
|t Monte Carlo Simulation Of Real Dynamic Systems --
|t Introduction --
|g 5-1.
|t Survey --
|t Repeated-Run Monte Carlo Simulation --
|g 5-2.
|t End-of-Run Statistics for Repeated Simulation Runs --
|g 5-3.
|t Example: Effects of Gun-Elevation Errors on a 1776 Cannnonball Trajectory --
|g 5-4.
|t Sequential Monte Carlo Simulation --
|t Vectorized Monte Carlo Simulation --
|g 5-5.
|t Vectorized Monte Carlo Simulation of the 1776 Cannon Shot --
|g 5-6.
|t Combined Vectorized and Repeated-Run Monte Carlo Simulation --
|g 5-7.
|t Interactive Monte Carlo Simulation: Computing Runtime Histories of Statistics with DYNAMIC-Segment DOT Operations --
|g 5-8.
|t Example: Torpedo Trajectory Dispersion --
|t Simulation Of Noisy Control Systems --
|g 5-9.
|t Monte Carlo Simulation of a Nonlinear Servomechanism: A Noise-Input Test --
|g 5-10.
|t Monte Carlo Study of Control-System Errors Caused by Noise --
|t Additional Topics --
|g 5-11.
|t Monte Carlo Optimization --
|g 5-12.
|t Convenient Heuristic Method for Testing Pseudorandom Noise --
|g 5-13.
|t Alternative to Monte Carlo Simulation --
|g (a).
|t Introduction --
|g (b).
|t Dynamic Systems with Random Perturbations --
|g (c).
|t Mean-Square Errors in Linearized Systems --
|t References --
|g ch. 6
|t Vector Models Of Neural Networks --
|t Artificial Neural Networks --
|g 6-1.
|t Introduction --
|g 6-2.
|t Artificial Neural Networks --
|g 6-3.
|t Static Neural Networks: Training, Validation, and Applications --
|g 6-4.
|t Dynamic Neural Networks --
|t Simple Vector Assignments Model Neuron Layers --
|g 6-5.
|t Neuron-Layer Declarations and Neuron Operations --
|g 6-6.
|t Neuron-Layer Concatenation Simplifies Bias Inputs --
|g 6-7.
|t Normalizing and Contrast-Enhancing Layers --
|g (a).
|t Pattern Normalization --
|g (b).
|t Contrast Enhancement: Softmax and Thresholding --
|g 6-8.
|t Multilayer Networks --
|g 6-9.
|t Exercising a Neural-Network Model --
|g (a).
|t Computing Successive Neuron-Layer Outputs --
|g (b).
|t Input from Pattern-Row Matrices --
|g (c).
|t Input from Text Files and Spreadsheets --
|t SUPERVISED TRAINING FOR REGRESSION --
|g 6-10.
|t Mean-Square Regression --
|g (a).
|t Problem Statement --
|g (b).
|t Linear Mean-Square Regression and the Delta Rule --
|g (c).
|t Nonlinear Neuron Layers and Activation-Function Derivatives --
|g (d).
|t Error-Measure Display --
|g 6-11.
|t Backpropagation Networks --
|g (a).
|t Generalized Delta Rule --
|g (b).
|t Momentum Learning --
|g (c).
|t Simple Example --
|g (d).
|t Classical XOR Problem and Other Examples --
|t More Neural-Network Models --
|g 6-12.
|t Functional-Link Networks --
|g 6-13.
|t Radial-Basis-Function Networks --
|g (a).
|t Basis-Function Expansion and Linear Optimization --
|g (b).
|t Radial Basis Functions --
|g 6-14.
|t Neural-Network Submodels.
|
505 |
0 |
0 |
|g Note continued:
|t Pattern Classification --
|g 6-15.
|t Introduction --
|g 6-16.
|t Classifier Input from Files --
|g 6-17.
|t Classifier Networks --
|g (a).
|t Simple Linear Classifiers --
|g (b).
|t Softmax Classifiers --
|g (c).
|t Backpropagation Classifiers --
|g (d).
|t Functional-Link Classifiers --
|g (e).
|t Other Classsifiers --
|g 6-18.
|t Examples --
|g (a).
|t Classification Using an Empirical Database: Fisher's Iris Problem --
|g (b).
|t Image-Pattern Recognition and Associative Memory --
|t Pattern Simplification --
|g 6-19.
|t Pattern Centering --
|g 6-20.
|t Feature Reduction --
|g (a).
|t Bottleneck Layers and Encoders --
|g (b).
|t Principal Components --
|t Network-Training Problems --
|g 6-21.
|t Learning-Rate Adjustment --
|g 6-22.
|t Overfitting and Generalization --
|g (a).
|t Introduction --
|g (b).
|t Adding Noise --
|g (c).
|t Early Stopping --
|g (d).
|t Regularization --
|g 6-23.
|t Beyond Simple Gradient Descent --
|t Unsupervised Competitive-Layer Classifiers --
|g 6-24.
|t Template-Pattern Matching and the CLEARN Operation --
|g (a).
|t Template Patterns and Template Matrix --
|g (b).
|t Matching Known Template Patterns --
|g (c).
|t Template-Pattern Training --
|g (d).
|t Correlation Training --
|g 6-25.
|t Learning with Conscience --
|g 6-26.
|t Competitive-Learning Experiments --
|g (a).
|t Pattern Classification --
|g (b).
|t Vector Quantization --
|g 6-27.
|t Simplified Adaptive-Resonance Emulation --
|t Supervised Competitive Learning --
|g 6-28.
|t LVQ Algorithm for Two-Way Classification --
|g 6-29.
|t Counterpropagation Networks --
|t Examples Of Clearn Classifiers --
|g 6-30.
|t Recognition of Known Patterns --
|g (a).
|t Image Recognition --
|g (b).
|t Fast Solution of the Spiral Benchmark Problem --
|g 6-31.
|t Learning Unknown Patterns --
|t References --
|g ch. 7
|t Dynamic Neural Networks --
|t Introduction --
|g 7-1.
|t Dynamic Versus Static Neural Networks --
|g 7-2.
|t Applications of Dynamic Neural Networks --
|g 7-3.
|t Simulations Combining Neural Networks and Differential-Equation Models --
|t Neural Networks With Delay-Line Input --
|g 7-4.
|t Introduction --
|g 7-5.
|t Delay-Line Model --
|g 7-6.
|t Delay-Line-Input Networks --
|g (a).
|t Linear Combiners --
|g (b).
|t One-Layer Nonlinear Network --
|g (c).
|t Functional-Link Network --
|g (d).
|t Backpropagation Network with Delay-Line Input --
|g 7-7.
|t Using Gamma Delay Lines --
|t Static Neural Networks Used As Dynamic Networks --
|g 7-8.
|t Introduction --
|g 7-9.
|t Simple Backpropagation Networks --
|t Recurrent Neural Networks --
|g 7-10.
|t Layer-Feedback Networks --
|g 7-11.
|t Simplified Recurrent-Network Models Combine Context and Input Layers --
|g (a).
|t Conventional Model of a Jordan Network --
|g (b).
|t Simplified Jordan-Network Model --
|g (c).
|t Simplified Models for Other Feedback Networks --
|g 7-12.
|t Neural Networks with Feedback Delay Lines --
|g (a).
|t Delay-Line Feedback --
|g (b).
|t Neural Networks with Both Input and Feedback Delay Lines --
|g 7-13.
|t Teacher Forcing --
|t Predictor Networks --
|g 7-14.
|t Off-Line Predictor Training --
|g (a).
|t Off-Line Prediction Using Stored Time Series --
|g (b).
|t Off-Line Training System for Online Predictors --
|g (c).
|t Example: Simple Linear Predictor --
|g 7-15.
|t Online Trainng for True Online Prediction --
|g 7-16.
|t Chaotic Time Series for Prediction Experiments --
|g 7-17.
|t Gallery of Predictor Networks --
|t Other Applications Of Dynamic Networks --
|g 7-18.
|t Temporal-Pattern Recognition: Regression and Classification --
|g 7-19.
|t Model Matching --
|g (a).
|t Introduction --
|g (b).
|t Example: Program for Matching Narendra's Plant Model --
|t Miscellaneous Topics --
|g 7-20.
|t Biological-Network Software --
|t References --
|g ch. 8
|t More Appications Of Vector Models --
|t Vectorized Simulation With Logarithmic Plots --
|g 8-1.
|t EUROSIM No. 1 Benchmark Problem --
|g 8-2.
|t Vectorized Simulation with Logarithmic Plots --
|t Modeling Fuzzy-Logic Function Generators --
|g 8-3.
|t Rule Tables Specify Heuristic Functions --
|g 8-4.
|t Fuzzy-Set Logic --
|g (a).
|t Fuzzy Sets and Membership Functions --
|g (b).
|t Fuzzy Intersections and Unions --
|g (c).
|t Joint Membership Functions --
|g (d).
|t Normalized Fuzzy-Set Partitions --
|g 8-5.
|t Fuzzy-Set Rule Tables and Function Generators --
|g 8-6.
|t Simplified Function Generation with Fuzzy Basis Functions --
|g 8-7.
|t Vector Models of Fuzzy-Set Partitions --
|g (a).
|t Gaussian Bumps: Effects of Normalization --
|g (b).
|t Triangle Functions --
|g (c).
|t Smooth Fuzzy-Basis Functions --
|g 8-8.
|t Vector Models for Multidimensional Fuzzy-Set Partitions --
|g 8-9.
|t Example: Fuzzy-Logic Control of a Servomechanism --
|g (a).
|t Problem Statement --
|g (b).
|t Experiment Protocol and Rule Table --
|g (c).
|t DYNAMIC Program Segment and Results --
|t Partial Differential Equations --
|g 8-10.
|t Method of Lines --
|g 8-11.
|t Vectorized Method of Lines --
|g (a).
|t Introduction --
|g (b).
|t Using Differentiation Operators --
|g (c).
|t Numerical Problems --
|g 8-12.
|t Heat-Conduction Equation in Cylindrical Coordinates --
|g 8-13.
|t Generalizations --
|g 8-14.
|t Simple Heat-Exchanger Model --
|t Fourier Analysis And Linear-System Dynamics --
|g 8-15.
|t Introduction --
|g 8-16.
|t Function-Table Lookup and Interpolation --
|g 8-17.
|t Fast-Fourier-Transform Operations --
|g 8-18.
|t Impulse and Freqency Response of a Linear Servomechanism --
|g 8-19.
|t Compact Vector Models of Linear Dynamic Systems --
|g (a).
|t Using the Index-Shift Operation with Analog Integration --
|g (b).
|t Linear Sampled-Data Systems --
|g (c).
|t Example: Digital Comb Filter --
|t Replication Of Agroecological Models On Map Grids --
|g 8-20.
|t Geographical Information System --
|g 8-21.
|t Modeling the Evolution of Landscape Features --
|g 8-22.
|t Matrix Operations on a Map Grid --
|t References --
|t APPENDIX: ADDITIONAL REFERENCE MATERIAL --
|g A-1.
|t Example of a Radial-Basis-Function Network --
|g A-2.
|t Fuzzy-Basis-Function Network.
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a System analysis
|x Simulation methods.
|
650 |
|
0 |
|a Open source software.
|
650 |
|
0 |
|a Computer software
|x Development.
|
650 |
|
6 |
|a Analyse de systèmes
|x Méthodes de simulation.
|
650 |
|
6 |
|a Logiciels libres.
|
650 |
|
7 |
|a COMPUTERS
|x Computer Simulation.
|2 bisacsh
|
650 |
|
7 |
|a Computer software
|x Development
|2 fast
|
650 |
|
7 |
|a Open source software
|2 fast
|
650 |
|
7 |
|a System analysis
|x Simulation methods
|2 fast
|
650 |
|
7 |
|a Civil & Environmental Engineering.
|2 hilcc
|
650 |
|
7 |
|a Engineering & Applied Sciences.
|2 hilcc
|
650 |
|
7 |
|a Operations Research.
|2 hilcc
|
776 |
0 |
8 |
|i Print version:
|a Korn, Granino A. (Granino Arthur), 1922-
|t Advanced dynamic-system simulation.
|b Second edition.
|d Hoboken, New Jersey : John Wiley & Sons Inc., [2012]
|z 9781118397350
|w (DLC) 2012034771
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1124314
|z Texto completo
|
938 |
|
|
|a 123Library
|b 123L
|n 64537
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH24971489
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 24807464
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL1124314
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10658428
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 536083
|
938 |
|
|
|a Recorded Books, LLC
|b RECE
|n rbeEB00063821
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10196184
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 9662004
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 13035617
|
994 |
|
|
|a 92
|b IZTAP
|