Cargando…

The Kohn-Sham equation for deformed crystals /

"The solution to the Kohn-Sham equation in the density functional theory of the quantum many-body problem is studied in the context of the electronic structure of smoothly deformed macroscopic crystals. An analog of the classical Cauchy-Born rule for crystal lattices is established for the elec...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: E, Weinan, 1963-
Otros Autores: Lu, Jianfeng, 1983-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, [2012]
Colección:Memoirs of the American Mathematical Society ; no. 1040.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn818871756
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 121121t20122012riua ob 000 0 eng d
040 |a GZM  |b eng  |e rda  |e pn  |c GZM  |d OCLCO  |d COD  |d OCLCQ  |d OCLCF  |d UIU  |d N$T  |d OTZ  |d COO  |d LLB  |d YDXCP  |d E7B  |d OCLCO  |d EBLCP  |d OCLCO  |d DEBSZ  |d OCLCQ  |d OCLCO  |d OCLCQ  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCQ  |d QGK  |d OCLCO 
019 |a 833337726  |a 908071140  |a 922965076  |a 1259168765 
020 |a 9780821894668  |q (electronic bk.) 
020 |a 0821894668  |q (electronic bk.) 
020 |z 9780821875605  |q (alk. paper) 
020 |z 0821875604  |q (alk. paper) 
029 1 |a AU@  |b 000069467985 
029 1 |a DEBSZ  |b 452554365 
029 1 |a AU@  |b 000056852675 
035 |a (OCoLC)818871756  |z (OCoLC)833337726  |z (OCoLC)908071140  |z (OCoLC)922965076  |z (OCoLC)1259168765 
050 4 |a QD921  |b .E23 2012 
072 7 |a SCI  |x 016000  |2 bisacsh 
082 0 4 |a 548.8420153154 
049 |a UAMI 
100 1 |a E, Weinan,  |d 1963- 
245 1 4 |a The Kohn-Sham equation for deformed crystals /  |c Weinan E, Jianfeng Lu. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c [2012] 
264 4 |c ©2012 
300 |a 1 online resource (v, 97 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v v. 221, no. 1040 
500 |a "Volume 221, number 1040 (fourth of 5 numbers) January 2013." 
504 |a Includes bibliographical references (page 97). 
520 3 |a "The solution to the Kohn-Sham equation in the density functional theory of the quantum many-body problem is studied in the context of the electronic structure of smoothly deformed macroscopic crystals. An analog of the classical Cauchy-Born rule for crystal lattices is established for the electronic structure of the deformed crystal under the following physical conditions: (1) the band structure of the undeformed crystal has a gap, i.e. the crystal is an insulator, (2) the charge density waves are stable, and (3) the macroscopic dielectric tensor is positive definite. The effective equation governing the piezoelectric effect of a material is rigorously derived. Along the way, we also establish a number of fundamental properties of the Kohn-Sham map." 
588 0 |a PDF (http://www.ams.org viewed November 20, 2012). 
505 0 0 |t Chapter 1. Introduction  |t Chapter 2. Perfect crystal  |t Chapter 3. Stability condition  |t Chapter 4. Homogeneously deformed crystal  |t Chapter 5. Deformed crystal and the extended Cauchy-Born rule  |t Chapter 6. The linearized Kohn-Sham operator  |t Chapter 7. Proof of the results for the homogeneously deformed crystal  |t Chapter 8. Exponential decay of the resolvent  |t Chapter 9. Asymptotic analysis of the Kohn-Sham equation  |t Chapter 10. Higher order approximate solution to the Kohn-Sham equation  |t Chapter 11. Proofs of Lemmas 5.3 and 5.4  |t Appendix A. Proofs of Lemmas 9.3 and 9.9. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Dislocations in crystals  |x Mathematical models. 
650 0 |a Deformations (Mechanics)  |x Mathematical models. 
650 0 |a Density functionals. 
650 6 |a Dislocations dans les cristaux  |x Modèles mathématiques. 
650 6 |a Déformations (Mécanique)  |x Modèles mathématiques. 
650 6 |a Fonctionnelles densité. 
650 7 |a SCIENCE  |x Physics  |x Crystallography.  |2 bisacsh 
650 7 |a Deformations (Mechanics)  |x Mathematical models  |2 fast 
650 7 |a Density functionals  |2 fast 
650 7 |a Dislocations in crystals  |x Mathematical models  |2 fast 
700 1 |a Lu, Jianfeng,  |d 1983- 
776 0 8 |i Print version:  |a E, Weinan, 1963-  |t Kohn-Sham equation for deformed crystals  |z 9780821875605  |w (DLC) 2012035213  |w (OCoLC)813919259 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1040.  |x 0065-9266 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114438  |z Texto completo 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3114438 
938 |a ebrary  |b EBRY  |n ebr11041216 
938 |a EBSCOhost  |b EBSC  |n 843530 
938 |a YBP Library Services  |b YANK  |n 12081542 
994 |a 92  |b IZTAP