Wave front set of solutions to sums of squares of vector fields /
"We study the (micro)hypoanalyticity and the Gevrey hypoellipticity of sums of squares of vector fields in terms of the Poisson-Treves stratification. The FBI transform is used. We prove hypoanalyticity for several classes of sums of squares and show that our method, though not general, include...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
[2012]
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1039. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Chapter 1. Introduction Chapter 2. The Poisson-Treves stratification Chapter 3. Standard forms for a system of vector fields Chapter 4. Nested strata Chapter 5. Bargman pseudodifferential operators Chapter 6. The "A Priori" estimate on the FBI side Chapter 7. A single symplectic stratum Chapter 8. A single nonsymplectic stratum Chapter 9. Microlocal regularity in nested strata Chapter 10. Known cases and examples Appendix A.A bracket lemma Appendix B. Nonsymplectic strata do not have the reproducing bracket property.