|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_ocn817918292 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
121105s2010 enk o 000 0 eng d |
040 |
|
|
|a MERUC
|b eng
|e pn
|c MERUC
|d EBLCP
|d OCLCQ
|d UKDOC
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d MERUC
|d ZCU
|d ICG
|d OCLCO
|d OCLCF
|d OCLCQ
|d OCLCO
|d WYU
|d OCLCQ
|d DKC
|d AU@
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 936815238
|
020 |
|
|
|a 9780470394441
|
020 |
|
|
|a 0470394447
|
029 |
1 |
|
|a DEBBG
|b BV044154859
|
029 |
1 |
|
|a DEBSZ
|b 430996462
|
035 |
|
|
|a (OCoLC)817918292
|z (OCoLC)936815238
|
050 |
|
4 |
|a TK5102.9 .A452813 2010
|
082 |
0 |
4 |
|a 621.382/2
|a 621.3822
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Castanié, Francis.
|
245 |
1 |
0 |
|a Spectral Analysis :
|b Parametric and Non-parametric Digital Methods.
|
260 |
|
|
|a London :
|b Wiley,
|c 2010.
|
300 |
|
|
|a 1 online resource (264 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a ISTE ;
|v v. 665
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Spectral Analysis; Table of Contents; Preface; Specific Notations; PART I. Tools and Spectral Analysis; Chapter 1. Fundamentals; 1.1. Classes of signals; 1.1.1. Deterministic signals; 1.1.2. Random signals; 1.2. Representations of signals; 1.2.1. Representations of deterministic signals; 1.2.1.1. Complete representations; 1.2.1.2. Partial representations; 1.2.2. Representations of random signals; 1.2.2.1. General approach; 1.2.2.2. 2nd order representations; 1.2.2.3. Higher order representations; 1.3. Spectral analysis: position of the problem; 1.4. Bibliography.
|
505 |
8 |
|
|a Chapter 2. Digital Signal Processing2.1. Introduction; 2.2. Transform properties; 2.2.1. Some useful functions and series; 2.2.2. Fourier transform; 2.2.3. Fundamental properties; 2.2.4. Convolution sum; 2.2.5. Energy conservation (Parseval's theorem); 2.2.6. Other properties; 2.2.7. Examples; 2.2.8. Sampling; 2.2.9. Practical calculation, FFT; 2.3. Windows; 2.4. Examples of application; 2.4.1. LTI systems identification; 2.4.2. Monitoring spectral lines; 2.4.3. Spectral analysis of the coefficient of tide fluctuation; 2.5. Bibliography; Chapter 3. Estimation in Spectral Analysis.
|
505 |
8 |
|
|a 3.1. Introduction to estimation3.1.1. Formalization of the problem; 3.1.2. Cramér-Rao bounds; 3.1.3. Sequence of estimators; 3.1.4. Maximum likelihood estimation; 3.2. Estimation of 1st and 2nd order moments; 3.3. Periodogram analysis; 3.4. Analysis of estimators based on cxx (m); 3.4.1. Estimation of parameters of an AR model; 3.4.2. Estimation of a noisy cisoid by MUSIC; 3.5. Conclusion; 3.6. Bibliography; Chapter 4. Time-Series Models; 4.1. Introduction; 4.2. Linear models; 4.2.1. Stationary linear models; 4.2.2. Properties; 4.2.2.1. Stationarity; 4.2.2.2. Moments and spectra.
|
505 |
8 |
|
|a 4.2.2.3. Relation with Wold's decomposition4.2.3. Non-stationary linear models; 4.3. Exponential models; 4.3.1. Deterministic model; 4.3.2. Noisy deterministic model; 4.3.3. Models of random stationary signals; 4.4. Non-linear models; 4.5. Bibliography; PART II. Non-Parametric Methods; Chapter 5. Non-Parametric Methods; 5.1. Introduction; 5.2. Estimation of the power spectral density; 5.2.1. Filter bank method; 5.2.2. Periodogram method; 5.2.3. Periodogram variants; 5.3. Generalization to higher order spectra; 5.4. Bibliography; PART III. Parametric Methods.
|
505 |
8 |
|
|a Chapter 6. Spectral Analysis by Stationary Time Series Modeling6.1. Parametric models; 6.2. Estimation of model parameters; 6.2.1. Estimation of AR parameters; 6.2.2. Estimation of ARMA parameters; 6.2.3. Estimation of Prony parameters; 6.2.4. Order selection criteria; 6.3. Properties of spectral estimators produced; 6.4. Bibliography; Chapter 7. Minimum Variance; 7.1. Principle of the MV method; 7.2. Properties of the MV estimator; 7.2.1. Expressions of the MV filter; 7.2.2. Probability density of the MV estimator; 7.2.3. Frequency resolution of the MV estimator.
|
500 |
|
|
|a 7.3. Link with the Fourier estimators.
|
520 |
|
|
|a This book deals with these parametric methods, first discussing those based on time series models, Capon's method and its variants, and then estimators based on the notions of sub-spaces. However, the book also deals with the traditional "analog" methods, now called non-parametric methods, which are still the most widely used in practical spectral analysis.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Signal processing
|x Digital techniques.
|
650 |
|
0 |
|a Spectrum analysis
|x Statistical methods.
|
650 |
|
6 |
|a Traitement du signal
|x Techniques numériques.
|
650 |
|
7 |
|a Signal processing
|x Digital techniques
|2 fast
|
650 |
|
7 |
|a Spectrum analysis
|x Statistical methods
|2 fast
|
758 |
|
|
|i has work:
|a Spectral analysis (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGp89j4KY8GVqDGH3rTvHC
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Castanié, Francis.
|t Spectral Analysis : Parametric and Non-parametric Digital Methods.
|d London : Wiley, ©2010
|z 9781905209057
|
830 |
|
0 |
|a ISTE.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=700723
|z Texto completo
|
938 |
|
|
|a 123Library
|b 123L
|n 21830
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL700723
|
994 |
|
|
|a 92
|b IZTAP
|