Cargando…

Fracture mechanics of electromagnetic materials : nonlinear field theory and applications /

Fracture Mechanics of Electromagnetic Materials provides a comprehensive overview of fracture mechanics of conservative and dissipative materials, as well as a general formulation of nonlinear field theory of fracture mechanics and a rigorous treatment of dynamic crack problems involving coupled mag...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chen, Xiaohong
Otros Autores: Mai, Y. W., 1946-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Imperial College Press, 2013.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn817581654
003 OCoLC
005 20240329122006.0
006 m o d
007 cr mn|||||||||
008 121113s2012 enka o 000 0 eng d
040 |a HKP  |b eng  |e pn  |c HKP  |d OCLCO  |d YDXCP  |d N$T  |d IDEBK  |d E7B  |d STF  |d OCLCF  |d OCLCQ  |d VGM  |d OCLCA  |d OCLCQ  |d MERUC  |d OCLCQ  |d ZCU  |d NJR  |d OCLCQ  |d VTS  |d ICG  |d OCLCQ  |d TKN  |d DKC  |d OCLCQ  |d M8D  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ 
020 |a 9781848166646  |q (electronic bk.) 
020 |a 1848166648  |q (electronic bk.) 
020 |z 184816663X  |q (print) 
020 |z 9781848166639  |q (print) 
029 1 |a AU@  |b 000054190861 
029 1 |a DEBBG  |b BV043166648 
029 1 |a DEBBG  |b BV044171185 
029 1 |a DEBSZ  |b 421306866 
029 1 |a NZ1  |b 14832482 
035 |a (OCoLC)817581654 
050 4 |a TA409  |b .C434 2013eb 
072 7 |a TEC  |x 013000  |2 bisacsh 
082 0 4 |a 620.1/126  |2 23 
049 |a UAMI 
100 1 |a Chen, Xiaohong. 
245 1 0 |a Fracture mechanics of electromagnetic materials :  |b nonlinear field theory and applications /  |c Xiaohong Chen, Yiu-Wing Mai. 
260 |a London :  |b Imperial College Press,  |c 2013. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Ch. 1. Fundamentals of fracture mechanics. 1.1. Historical perspective. 1.2. Stress Intensity Factors (SIF). 1.3. Energy Release Rate (ERR). 1.4. J-integral. 1.5. Dynamic fracture. 1.6. Viscoelastic fracture. 1.7. Essential Work of Fracture (EWF). 1.8. Configuration force (material force) method. 1.9. Cohesive zone and virtual internal bond models -- ch. 2. Elements of electrodynamics of continua. 2.1. Notations. 2.2. Maxwell equations. 2.3. Balance equations of mass, momentum, moment of momentum, and energy. 2.4. Constitutive relations. 2.5. Linearized theory -- ch. 3. Introduction to thermoviscoelasticity. 3.1. Thermoelasticity. 3.2. Viscoelasticity. 3.3. Coupled theory of thermoviscoelasticity. 3.4. Thermoviscoelastic boundary-initial value problems -- ch. 4. Overview on fracture of electromagnetic materials. 4.1. Introduction. 4.2. Basic field equations. 4.3. General solution procedures. 4.4. Debates on crack-face boundary conditions. 4.5. Fracture criteria. 4.6. Experimental observations. 4.7. Nonlinear studies. 4.8. Status and prospects -- ch. 5. Crack driving force in electro-thermo-elastodynamic fracture. 5.1. Introduction. 5.2. Fundamental principles of thermodynamics. 5.3. Energy flux and dynamic contour integral. 5.4. Dynamic energy release rate serving as crack driving force. 5.5. Configuration force and energy-momentum tensor. 5.6. Coupled electromechanical jump/boundary conditions. 5.7. Asymptotic near-tip field solution. 5.8. Remarks -- ch. 6. Dynamic fracture mechanics of magneto-electro-thermo-elastic solids. 6.1. Introduction. 6.2. Thermodynamic formulation of fully coupled dynamic framework. 6.3. Stroh-type formalism for steady-state crack propagation under coupled magneto-electro-mechanical jump/boundary conditions. 6.4. Magneto-electro-elastostatic crack problem as a special case. 6.5. Summary -- ch. 7. Dynamic crack propagation in magneto-electro-elastic solids. 7.1. Introduction. 7.2. Shear horizontal surface waves. 7.3. Transient mode-III crack growth problem. 7.4. Integral transform, Wiener-Hopf technique, and Cagniard-de Hoop method. 7.5. Fundamental solutions for traction loading only. 7.6. Fundamental solutions for mixed loads. 7.7. Evaluation of dynamic energy release rate. 7.8. Influence of shear horizontal surface wave speed and crack tip velocity. 
505 8 |a Ch. 8. Fracture of functionally graded materials. 8.1. Introduction. 8.2. Formulation of boundary-initial value problems. 8.3. Basic solution techniques. 8.4. Fracture characterizing parameters. 8.5. Remarks -- ch. 9. Magneto-thermo-viscoelastic deformation and fracture. 9.1. Introduction. 9.2. Local balance equations for magnetic, thermal, and mechanical field quantities. 9.3. Free energy and entropy production inequality for memory-dependent magnetosensitive materials. 9.4. Coupled magneto-thermo-viscoelastic constitutive relations. 9.5. Generalized [symbol]-integral in nonlinear magneto-thermo-viscoelastic fracture. 9.6. Generalized plane crack problem and revisit of mode-III fracture of a magnetostrictive solid in a bias magnetic field -- ch. 10. Electro-thermo-viscoelastic deformation and fracture. 10.1. Introduction. 10.2. Local balance equations for electric, thermal, and mechanical field quantities. 10.3. Free energy and entropy production inequality for memory-dependent electrosensitive materials. 10.4. Coupled electro-thermo-viscoelastic constitutive relations. 10.5. Generalized [symbol]-integral in nonlinear electro-thermo-viscoelastic fracture. 10.6. Analogy between nonlinear magneto- and electro-thermo-viscoelastic constitutive and fracture theories. 10.7. Reduction to Dorfmann-Ogden nonlinear magneto- and electro-elasticity -- ch. 11. Nonlinear field theory of fracture mechanics for paramagnetic and ferromagnetic materials. 11.1. Introduction. 11.2. Global energy balance equation and non-negative global dissipation requirement. 11.3. Hamiltonian density and thermodynamically admissible conditions. 11.4. Thermodynamically consistent time-dependent fracture criterion. 11.5. Generalized energy release rate versus bulk dissipation rate. 11.6. Local generalized [symbol]-integral versus global generalized [symbol]-integral. 11.7. Essential work of fracture versus nonessential work of fracture -- ch. 12. Nonlinear field theory of fracture mechanics for piezoelectric and ferroelectric materials. 12.1. Introduction. 12.2. Nonlinear field equations. 12.3. Thermodynamically consistent time-dependent fracture criterion. 12.4. Correlation with conventional fracture mechanics approaches -- ch. 13. Applications to fracture characterization. 13.1. Introduction. 13.2. Energy release rate method and its generalization. 13.3. J-R curve method and its generalization. 13.4. Essential work of fracture method and its extension. 13.5. Closure. 
520 |a Fracture Mechanics of Electromagnetic Materials provides a comprehensive overview of fracture mechanics of conservative and dissipative materials, as well as a general formulation of nonlinear field theory of fracture mechanics and a rigorous treatment of dynamic crack problems involving coupled magnetic, electric, thermal and mechanical field quantities. Thorough emphasis is placed on the physical interpretation of fundamental concepts, development of theoretical models and exploration of their applications to fracture characterization in the presence of magneto-electro-thermo-mechanical coupling and dissipative effects. Mechanical, aeronautical, civil, biomedical, electrical and electronic engineers interested in application of the principles of fracture mechanics to design analysis and durability evaluation of smart structures and devices will find this book an invaluable resource. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
650 0 |a Fracture mechanics. 
650 0 |a Magnetic materials. 
650 0 |a Nonlinear theories. 
650 6 |a Mécanique de la rupture. 
650 6 |a Matériaux magnétiques. 
650 6 |a Théories non linéaires. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Fracture Mechanics.  |2 bisacsh 
650 7 |a Fracture mechanics  |2 fast 
650 7 |a Magnetic materials  |2 fast 
650 7 |a Nonlinear theories  |2 fast 
700 1 |a Mai, Y. W.,  |d 1946-  |1 https://id.oclc.org/worldcat/entity/E39PBJjxtmBWYRtwtgHxrdHpyd 
776 0 8 |i Print version:  |a Chen, Xiaohong.  |t Fracture mechanics of electromagnetic materials : nonlinear field theory and applications.  |d London : Imperial College Press, 2013  |z 9781848166639 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1080990  |z Texto completo 
938 |a ebrary  |b EBRY  |n ebr10627516 
938 |a EBSCOhost  |b EBSC  |n 504184 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 416312 
938 |a YBP Library Services  |b YANK  |n 9930011 
994 |a 92  |b IZTAP