Modern Tools for the Synthesis of Complex Bioactive Molecules.
All the latest tools needed to plan and perform the synthesis of complex bioactive molecules Focusing on organic, organometallic, and bio-oriented processes, this book explores the impact and use of the latest synthetic tools for the synthesis of complex biologically active compounds. Readers will d...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Chicester :
Wiley,
2012.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- MODERN TOOLS FOR THE SYNTHESIS OF COMPLEX BIOACTIVE MOLECULES; CONTENTS; FOREWORD; PREFACE; CONTRIBUTORS; CHAPTER 1: C-H FUNCTIONALIZATION: A NEW STRATEGY FOR THE SYNTHESIS OF BIOLOGICALLY ACTIVE NATURAL PRODUCTS; 1.1. INTRODUCTION; 1.2. PALLADIUM(0)-CATALYZED INTRAMOLECULAR DIRECT ARYLATION; 1.3. PALLADIUM(0)-CATALYZED INTRAMOLECULAR ALKENYLATION OF sp2 C-H BONDS; 1.4. PALLADIUM(0)-CATALYZED INTRAMOLECULAR ARYLATION OF sp3 C-H BONDS; 1.5. PALLADIUM(II)-MEDIATED INTRAMOLECULAR OXIDATIVE ALKENYLATION OF sp2 C-H BONDS.
- 1.6. DIRECTING GROUP-ASSISTED PALLADIUM(II)- ENABLED CARBON-CARBON BOND FORMATION AT sp3 C-H BONDS1.7. PLATINUM(II)-MEDIATED ALKANE DEHYDROGENATION; 1.8. PALLADIUM(II)-ENABLED CARBON-OXYGEN BOND FORMATION AT sp3 C-H BONDS; 1.9. IRIDIUM-CATALYZED BORYLATION OF sp2 C-H BONDS; 1.10. RHODIUM(I)-CATALYZED INTRAMOLECULAR DIRECTED ALKYLATION OF sp2 C-H BONDS; 1.11. RHODIUM(III)-CATALYZED SYNTHESIS OF NITROGEN-CONTAINING HETEROCYCLES; 1.12. CONCLUSION; REFERENCES; CHAPTER 2: THE NEGISHI CROSS-COUPLING IN THE SYNTHESIS OF NATURAL PRODUCTS AND BIOACTIVE MOLECULES; 2.1. INTRODUCTION.
- 2.2. SYNTHESIS OF NATURAL PRODUCTS2.2.1. Synthesis of Polyenes; 2.2.2. Synthesis of Amino Acids and Macrocyclic Peptides; 2.2.3. Synthesis of Macrocycles; 2.2.4. Synthesis of Small Heterocycles; 2.3. LARGE-SCALE SYNTHESIS OF BIOLOGICALLY ACTIVE MOLECULES; 2.3.1. Nonsteroidal Ligand A-224817.0 1A; 2.3.2. Phosphodiesterase Inhibitor PDE472; 2.3.3. Reverse Transcriptase Inhibitor MIV-150; 2.3.4. B-Raf Kinase Inhibitors; 2.3.5. mGluR1 Antagonist; 2.4. CONCLUSION; REFERENCES; CHAPTER 3: METAL-CATALYZED C-HETEROATOM CROSS-COUPLING REACTIONS; 3.1. GENERAL INTRODUCTION.
- 3.2. BUCHWALD-HARTWIG-TYPE REACTIONS3.2.1. Introduction; 3.2.2. Mechanism; 3.2.3. Scope and Limitations; 3.2.4. Applications in the Synthesis of Complex Bioactive Molecules; 3.2.5. C-N Bond Formation; 3.2.6. C-S and C-O Bond Formation; 3.3. ULLMANN-TYPE REACTIONS; 3.3.1. Introduction; 3.3.2. Mechanism; 3.3.3. Scope and Limitations; 3.3.4. Applications in the Synthesis of Complex Bioactive Molecules; 3.3.5. C-N Bond Formation; 3.3.6. C-O Bond Formation; 3.4. MISCELLANEOUS; 3.4.1. Chan-Lam-Evans; 3.4.2. Iron/Copper-Mediated Methodologies; 3.4.3. Other Metals; 3.5. CONCLUSION; REFERENCES.
- CHAPTER 4: GOLDEN OPPORTUNITIES IN THE SYNTHESIS OF NATURAL PRODUCTS AND BIOLOGICALLY ACTIVE COMPOUNDS4.1. INTRODUCTION; 4.2. GOLD-CATALYZED FORMATION OF OXYGEN-CONTAINING HETEROCYCLES; 4.2.1. Cyclizations Leading to Furan and Pyran Derivatives; 4.2.2. Spiroketalizations; 4.2.3. Other Transformations; 4.3. GOLD-CATALYZED FORMATION OF NITROGEN-CONTAINING HETEROCYCLES; 4.3.1. Cyclizations Involving the Formation of a New C-N Bond; 4.3.2. Cyclizations Involving the Formation of a New C-C Bond; 4.4. GOLD-CATALYZED FORMATION OF CARBOCYCLES.