Cargando…

Completely Positive Matrices.

A real matrix is positive semidefinite if it can be decomposed as A=BB'. In some applications the matrix B has to be elementwise nonnegative. If such a matrix exists, A is called completely positive. The smallest number of columns of a nonnegative matrix B such that A=BB' is known as the c...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Shaked-Monderer, Naomi (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: World Scientific 2003.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000M 4500
001 EBOOKCENTRAL_ocn815752525
003 OCoLC
005 20240329122006.0
006 m o d
007 cr un|---uuuuu
008 121012s2003 xx o 000 0 eng d
040 |a IDEBK  |b eng  |e pn  |c IDEBK  |d OCLCQ  |d I9W  |d EBLCP  |d DEBSZ  |d OCLCQ  |d STF  |d OCLCO  |d OCLCF  |d OCLCQ  |d MERUC  |d ZCU  |d U3W  |d ICG  |d INT  |d OCLCQ  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d LEAUB  |d HS0  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 1058107212  |a 1086446030 
020 |a 1281935638 
020 |a 9781281935632 
020 |a 9789812795212 
020 |a 9812795219 
020 |z 9812383689 
020 |z 9789812383686 
029 1 |a AU@  |b 000051356964 
029 1 |a DEBBG  |b BV044179496 
029 1 |a DEBSZ  |b 40524830X 
029 1 |a DEBSZ  |b 445555467 
035 |a (OCoLC)815752525  |z (OCoLC)1058107212  |z (OCoLC)1086446030 
050 4 |a QB980 
072 7 |a PBF  |2 bicssc 
082 0 4 |a 512.9434 
049 |a UAMI 
245 0 0 |a Completely Positive Matrices. 
260 |b World Scientific  |c 2003. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a A real matrix is positive semidefinite if it can be decomposed as A=BB'. In some applications the matrix B has to be elementwise nonnegative. If such a matrix exists, A is called completely positive. The smallest number of columns of a nonnegative matrix B such that A=BB' is known as the cp rank of A. This work focuses on necessary conditions and sufficient conditions for complete positivity, as well as bounds for the cp rank. The methods are combinatorial, geometric and algebraic. The required background on nonnegative matrices, cones, graphs and Schur complements is outlined. 
505 0 |a Ch. 1. Preliminaries. 1.1. Matrix theoretic background. 1.2. Positive semidefinite matrices. 1.3. Nonnegative matrices and M-matrices. 1.4. Schur complements. 1.5. Graphs. 1.6. Convex cones. 1.7. The PSD completion problem -- ch. 2. Complete positivity. 2.1. Definition and basic properties. 2.2. Cones of completely positive matrices. 2.3. Small matrices. 2.4. Complete positivity and the comparison matrix. 2.5. Completely positive graphs. 2.6. Completely positive matrices whose graphs are not completely positive. 2.7. Square factorizations. 2.8. Functions of completely positive matrices. 2.9. The CP completion problem -- ch. 3. CP rank. 3.1. Definition and basic results. 3.2. Completely positive matrices of a given rank. 3.3. Completely positive matrices of a given order. 3.4. When is the cp-rank equal to the rank? 
504 |a Includes bibliographical references (pages 193-197) and index. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Matrices. 
650 6 |a Matrices. 
650 7 |a Matrices  |2 fast 
700 1 |a Shaked-Monderer, Naomi.  |4 aut 
720 |a Berman, Abraham. 
758 |i has work:  |a Completely positive matrices (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGBcYc6j4wywfqMyBwqDG3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 1 |z 9812383689 
776 1 |z 9789812383686 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1681529  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24685168 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1681529 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 193563 
994 |a 92  |b IZTAP