Cargando…

Calculus : an active approach with projects /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hilbert, Stephen (Autor)
Autor Corporativo: Ithaca College. Calculus Group (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Washington, DC : Mathematical Association of America, [2010]
Colección:Classroom resource materials.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • 1. Activities. Graphical Calculus ; Functions, Limits, and Continuity ; Derivatives ; Integration ; Transcendental Functions ; Differential Equations ; Series
  • 2. Projects
  • 3. Instructor Notes for Activities. Graphical Calculus ; Functions, Limits, and Continuity ; Derivatives ; Integration ; Transcendental Functions ; Differential Equations ; Series
  • 4. Instructor Notes for Projects
  • 5. Appendices. Sample curriculum ; "Sample Guidelines for Projects" ; Guide to the Threads.
  • Preface
  • Introduction
  • Activities
  • Projects
  • A Modern Calculus Course
  • Course Logistics
  • About Using Projects
  • Questions About Using Student Groups
  • Questions About Using Activities
  • Questions About Course Organization and Content
  • Unifying Threads
  • To the Student
  • Acknowledgments
  • Contents
  • Part I Activities
  • 1 Graphical Calculus
  • Introduction
  • 1.1 Chalk Toss
  • 1.2 Classroom Walk
  • 1.3 Biking to School
  • 1.4 Raising a Flag
  • 1.5 Library Trip
  • Airplane Flight with Constant Velocity
  • 1.7 Projected Image1.8 A Formula for a Piecewise-Linear Graph
  • 1.9 Water Balloon
  • 1.10 Graphical Estimation of Slope
  • 1.11 Linear Approximation
  • 1.12 Slope with Rulers
  • 1.13 Examining Linear Velocity
  • 1.14 More Airplane Travel
  • 1.15 Dallas to Houston
  • 1.16 Given Velocity Graph, Sketch Distance Graph
  • 1.17 Function- Derivative Pairs
  • 1.18 Water Tank Problem
  • 1.19 Tax Rates and Concavity
  • 1.20 Water Container
  • 1.21 Testing Braking Performance
  • 1.22 The Start-up Firm
  • 1.23 Graphical Composition
  • 1.24 The Leaky Balloon
  • Inverse Function from Graphs2 Functions, Limits, and Continuity
  • Introduction
  • 2.1 Introduction to Functions
  • 2.2 Postage
  • 2.3 What is Continuity?
  • 2.4 Limits and Continuity from a Graph
  • 2.5 Slopes and Difference Quotients
  • 2.6 Sequences
  • 2.7 Can We Fool Newton?
  • 3 Derivatives
  • Introduction
  • 3.1 Estimating Cost
  • 3.2 Finite Differences
  • 3.3 Using the Derivative
  • 3.4 Gotcha
  • 3.5 Animal Growth Rates
  • 3.6 The Product Fund
  • 3.7 Exchange Rates and the Quotient Rule
  • 3.8 Using the Product Rule to Get the Chain Rule
  • 3.9 Magnification4 Integration
  • Introduction
  • 4.1 Time and Speed
  • 4.2 Oil Flow
  • 4.3 Can the Car Stop in Time?
  • 4.4 Fundamental Theorem of Calculus
  • 4.5 Comparing Integrals and Series
  • 4.6 Graphical Integration
  • 4.7 How Big Can an Integral Be?
  • 4.8 Numerical Integration
  • 4.9 Verifying the Parabolic Rule
  • 4.10 Finding the Average Rate of Inflation
  • 4.11 Cellular Phones
  • 4.12 The Shorter Path
  • 4.13 The River Sine
  • 4.14 Improper Integrals
  • 5 Transcendental Functions
  • Introduction
  • 5.1 Ferris Wheel
  • 5.2 Sunrise-Sunset5.3 Why Mathematicians Use ex
  • 5.4 Exponential Differences
  • 5.5 Inverse Functions
  • 5.6 Fitting Exponential Curves
  • 5.7 Log-Log Plots
  • 5.8 Using Scales
  • 6 Differential Equations
  • Introduction
  • 6.1 Direction Fields
  • 6.2 Using Direction Fields
  • 6.3 Drawing Solution Curves
  • 6.4 Cooling and Heating Models
  • 6.5 The Hot Potato
  • 6.6 Spread of a Rumor: Discrete Logistic Growth
  • 6.7 Population
  • 6.8 Save the Perch
  • 6.9 Systems of Differential Equations