Cargando…

Mathematics of two-dimensional turbulence /

"This book is dedicated to the mathematical study of two-dimensional statistical hydrodynamics and turbulence, described by the 2D Navier-Stokes system with a random force. The authors' main goal is to justify the statistical properties of a fluid's velocity field u(t, x) that physici...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Kuksin, Sergej B., 1955- (Autor), Shirikyan, Armen (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge [England] ; New York : Cambridge University Press, 2012.
Colección:Cambridge tracts in mathematics ; 194.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 EBOOKCENTRAL_ocn812481755
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 121010s2012 enk ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d CDX  |d OCLCO  |d IDEBK  |d EBLCP  |d CAMBR  |d E7B  |d DEBSZ  |d OL$  |d COO  |d OCLCQ  |d OCLCF  |d CUS  |d OCLCQ  |d VGM  |d OCLCQ  |d BUF  |d UAB  |d OCLCQ  |d COCUF  |d STF  |d LOA  |d CUY  |d MERUC  |d ZCU  |d ICG  |d K6U  |d VT2  |d U3W  |d OCLCQ  |d WYU  |d LVT  |d TKN  |d DKC  |d AGLDB  |d SNK  |d BTN  |d MHW  |d INTCL  |d AUW  |d AU@  |d OCLCQ  |d M8D  |d UKAHL  |d CEF  |d AUD  |d OCLCQ  |d A6Q  |d G3B  |d OCLCQ  |d UKCRE  |d AJS  |d QGK  |d OCLCO  |d OCLCQ  |d S9M  |d OCLCL  |d OCLCQ 
066 |c (S 
019 |a 812251799  |a 813396650  |a 817820374  |a 818128983  |a 819631760  |a 853661644  |a 1042914569  |a 1043711802  |a 1055346588  |a 1058641993  |a 1065979464  |a 1076690078  |a 1081207002  |a 1096232059  |a 1153491918  |a 1228534985  |a 1259114080 
020 |a 9781139569194  |q (electronic bk.) 
020 |a 1139569198  |q (electronic bk.) 
020 |a 9781139137119  |q (electronic bk.) 
020 |a 1139137115  |q (electronic bk.) 
020 |a 9781139571005 
020 |a 1139571001 
020 |a 9781139572750  |q (ebook) 
020 |a 113957275X 
020 |a 9781139572750 
020 |z 9781107022829 
020 |z 1107022827 
020 |z 661395117X 
020 |z 9786613951175 
020 |z 1283638711 
020 |z 9781283638715 
020 |a 1139888986 
020 |a 9781139888981 
020 |a 1139579576 
020 |a 9781139579575 
020 |a 1139573527 
020 |a 9781139573528 
020 |a 1139570099 
020 |a 9781139570091 
024 8 |a 9786613951175 
029 1 |a DEBSZ  |b 379330040 
029 1 |a NLGGC  |b 351933506 
029 1 |a NZ1  |b 15497270 
035 |a (OCoLC)812481755  |z (OCoLC)812251799  |z (OCoLC)813396650  |z (OCoLC)817820374  |z (OCoLC)818128983  |z (OCoLC)819631760  |z (OCoLC)853661644  |z (OCoLC)1042914569  |z (OCoLC)1043711802  |z (OCoLC)1055346588  |z (OCoLC)1058641993  |z (OCoLC)1065979464  |z (OCoLC)1076690078  |z (OCoLC)1081207002  |z (OCoLC)1096232059  |z (OCoLC)1153491918  |z (OCoLC)1228534985  |z (OCoLC)1259114080 
037 |a 395117  |b MIL 
050 4 |a QA911  |b .K85 2012eb 
072 7 |a SCI  |x 085000  |2 bisacsh 
072 7 |a SCI  |2 eflch 
072 7 |a PHDF  |2 bicssc 
082 0 4 |a 532/.052701519  |2 23 
084 |a MAT029000  |2 bisacsh 
049 |a UAMI 
100 1 |a Kuksin, Sergej B.,  |d 1955-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PBJvRQy7rrXtWBtrpHPbTpP 
245 1 0 |a Mathematics of two-dimensional turbulence /  |c Sergei Kuksin, Armen Shirikyan. 
260 |a Cambridge [England] ;  |a New York :  |b Cambridge University Press,  |c 2012. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file 
490 1 |a Cambridge tracts in mathematics ;  |v 194 
520 |a "This book is dedicated to the mathematical study of two-dimensional statistical hydrodynamics and turbulence, described by the 2D Navier-Stokes system with a random force. The authors' main goal is to justify the statistical properties of a fluid's velocity field u(t, x) that physicists assume in their work. They rigorously prove that u(t, x) converges, as time grows, to a statistical equilibrium, independent of initial data. They use this to study ergodic properties of u(t, x) - proving, in particular, that observables f(u(t, .)) satisfy the strong law of large numbers and central limit theorem. They also discuss the inviscid limit when viscosity goes to zero, normalising the force so that the energy of solutions stays constant, while their Reynolds numbers grow to infinity. They show that then the statistical equilibria converge to invariant measures of the 2D Euler equation and study these measures. The methods apply to other nonlinear PDEs perturbed by random forces"--  |c Provided by publisher 
520 |a "This book deals with basic problems and questions, interesting for physicists and engineers working in the theory of turbulence. Accordingly Chapters 3-5 (which form the main part of this book) end with sections, where we explain the physical relevance of the obtained results. These sections also provide brief summaries of the corresponding chapters. In Chapters 3 and 4, our main goal is to justify, for the 2D case, the statistical properties of fluid's velocity"--  |c Provided by publisher 
588 0 |a Print version record. 
505 0 |a 1. Preliminaries -- 2. Two-dimensional Navier-Stokes equations -- 3. Uniqueness of stationary measure and mixing -- 4. Ergodicity and limiting theorems -- 5. Inviscid limit -- 6. Miscellanies -- 7. Appendix -- 8. Solutions to some exercises. 
504 |a Includes bibliographical references (pages 307-318) and index. 
546 |a English. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Hydrodynamics  |x Statistical methods. 
650 0 |a Turbulence  |x Mathematics. 
650 4 |a Hydrodynamics  |x Statistical methods. 
650 4 |a Turbulence  |x Mathematics. 
650 6 |a Hydrodynamique  |x Méthodes statistiques. 
650 6 |a Turbulence  |x Mathématiques. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a SCIENCE  |x Mechanics  |x Fluids.  |2 bisacsh 
650 7 |a Hidrodinámica  |2 embne 
650 7 |a Hydrodynamics  |x Statistical methods  |2 fast 
650 7 |a Turbulence  |x Mathematics  |2 fast 
700 1 |a Shirikyan, Armen,  |e author. 
758 |i has work:  |a Mathematics of two-dimensional turbulence (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGKJ6VFjq9yF36F9K9WyMP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Kuksin, Sergej B., 1955-  |t Mathematics of two-dimensional turbulence.  |d Cambridge, [England] ; New York : Cambridge University Press, 2012  |z 9781107022829  |w (DLC) 2012024345  |w (OCoLC)793221740 
830 0 |a Cambridge tracts in mathematics ;  |v 194. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1025050  |z Texto completo 
880 8 |6 505-00/(S  |a 4.1.3 Central limit theorem -- 4.2 Random attractors and stationary distributions -- 4.2.1 Random point attractors -- 4.2.2 The Ledrappier-Le Jan-Crauel theorem -- 4.2.3 Ergodic RDS and minimal attractors -- 4.2.4 Application to the Navier-Stokes system -- 4.3 Dependence of stationary measure on the random force -- 4.3.1 Regular dependence on parameters -- 4.3.2 Universality of white-noise perturbations -- 4.4 Relevance of the results for physics -- Notes and comments -- 5 Inviscid limit -- 5.1 Balance relations -- 5.1.1 Energy and enstrophy -- 5.1.2 Balance relations -- 5.1.3 Pointwise exponential estimates -- 5.2 Limiting measures -- 5.2.1 Existence of accumulation points -- 5.2.2 Estimates for the densities of the energy and enstrophy -- 5.2.3 Further properties of the limiting measures -- 5.2.4 Other scalings -- 5.2.5 Kicked Navier-Stokes system -- 5.2.6 Inviscid limit for the complex Ginzburg-Landau equation -- 5.3 Relevance of the results for physics -- Notes and comments -- 6 Miscellanies -- 6.1 3D Navier-Stokes system in thin domains -- 6.1.1 Preliminaries on the Cauchy problem -- 6.1.2 Large-time asymptotics of solutions -- 6.1.3 The limit ε → 0 -- Relevance of the results for physics -- 6.2 Ergodicity and Markov selection -- 6.2.1 Finite-dimensional stochastic differential equations -- 6.2.2 The Da Prato-Debussche-Odasso theorem -- 6.2.3 The Flandoli-Romito theorem -- 6.3 Navier-Stokes equations with very degenerate noise -- 6.3.1 2D Navier-Stokes equations: controllability and mixing properties -- 6.3.2 3D Navier-Stokes equations with degenerate noise -- Appendix -- A.1 Monotone class theorem -- A.2 Standard measurable spaces -- A.3 Projection theorem -- A.4 Gaussian random variables -- A.5 Weak convergence of random measures -- A.6 The Gelfand triple and Yosida approximation -- A.7 Itô formula in Hilbert spaces. 
938 |a Askews and Holts Library Services  |b ASKH  |n AH34205805 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37563276 
938 |a Askews and Holts Library Services  |b ASKH  |n AH33350894 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26385714 
938 |a Coutts Information Services  |b COUT  |n 23610227  |c 50.00 GBP 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1025050 
938 |a ebrary  |b EBRY  |n ebr10608423 
938 |a EBSCOhost  |b EBSC  |n 480318 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 395117 
938 |a YBP Library Services  |b YANK  |n 9783794 
938 |a YBP Library Services  |b YANK  |n 9807092 
938 |a YBP Library Services  |b YANK  |n 9808538 
938 |a YBP Library Services  |b YANK  |n 9809981 
994 |a 92  |b IZTAP