Frontiers in quantum information research : proceedings of the summer school on decoherence, entanglement & entropy and proceedings of the workshop on mps & dmrg.
This book is a collection of lecture notes/contributions from a summer school on decoherence, entanglement & entropy and a workshop on MPS (matrix product states) & DMRG (density matrix renormalization group). Subjects of the summer school include introduction to MPS, black holes, qubits and...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Singapore :
World Scientific,
2012.
|
Colección: | Kinki University series on quantum computing.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Summer School on Decoherence, Entanglement and Entropy Oxford Kobe Institute (Kobe, Japan); Preface; Workshop on Matrix Product State Formulation and Density Matrix Renormalization Group Simulations (MPS & DMRG) Oxford Kobe Institute (Kobe, Japan); List of Participants; Committees; CONTENTS; Part A Summer School on Decoherence, Entanglement and Entropy; Black Holes and Qubits L. Borsten, M.J. Du., and W. Rubens; Overview; 1. Qubits and entanglement; 1.1. A brief introduction to quantum information; 1.1.1. Qubits; 1.2. Entanglement and the Bell inequality.
- 1.2.1. Entanglement dependent quantum information1.3. Entanglement classification; 1.3.1. Bell inequalities without the inequality; 1.3.2. The SLOCC paradigm; 1.3.3. Entanglement measures; 1.3.4. Stochastic LOCC equivalence; 1.4. Bipartite entanglement; 1.4.1. Generic finite-dimensional bipartite systems; 1.4.2. Two qubits; 1.5. Three qubit entanglement; 1.5.1. Local unitary invariants; 1.5.2. Cayley's hyperdeterminant; 1.5.3. Entanglement classification; 2. Black holes in M-theory; 2.1. The road to M-theory; 2.2. Black holes; 2.2.1. Extremal black holes; 2.3. Black hole thermodynamics.
- 2.4. Black holes in supergravity2.5. The STU model; 2.5.1. The Lagrangian; 2.5.2. The Bogomol'nyi spectrum; 2.5.3. Black hole entropy; 3. STU black holes and three qubits; 3.1. Entropy/entanglement correspondence; 3.2. Rebits; 3.3. Classification of N = 2 black holes and three-qubit states; 3.4. Further developments; 3.4.1. Microscopic interpretation; 3.4.2. 4-qubit entanglement and the STU model in D = 3; 4. Beyond the STU model; 4.1. N = 8 supergravity and black holes; 5. E7 and the tripartite entanglement of seven qubits; 6. Fano plane entanglement and the octonions.
- 6.1. Composition algebras6.2. The octonionic tripartite entanglement of seven qubits; 6.3. Subsectors; 7. Cubic Jordan algebras and the Freudenthal triple system; 7.1. Cubic Jordan algebras; 7.2. The Freudenthal triple system; 8. The 3-qubit Freudenthal triple system; 8.1. The FTS rank entanglement classes; 8.1.1. Rank 1 and the class of separable states; 8.1.2. Rank 2 and the class of biseparable states; 8.1.3. Rank 3 and the class of W-states; 8.1.4. Rank 4 and the class of GHZ-states; 8.2. SLOCC orbits; 9. Supersymmetric quantum information; 10. Supergroups; 10.1. Grassmann numbers.
- 10.2. Super linear algebra10.3. Orthosymplectic superalgebras; 11. Super Hilbert space and uOSp(1 2); 11.0.1. Physical states; 11.1. The superqubit; 12. Super entanglement; 12.1. Two superqubits; 12.2. Three superqubits; Acknowledgments; References; Weak Value with Decoherence A. Hosoya; 1. Introduction; 2. Weak Value; 3. Weak Measurement with Decoherence; 3.1. Weak Measurement-Review; 3.2. Weak Measurement and Environment; 4. Geometric Phase; 5. Summary; Bibliography; Lectures on Matrix Product Representation of States V. Karimipour and M. Asoudeh; 1. Introduction.