Quasilinear elliptic equations with degenerations and singularities /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin ; New York :
W. de Gruyter,
1997.
|
Colección: | De Gruyter series in nonlinear analysis and applications ;
5. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- List of symbols, theorems, definitions, assumptions, examples
- List of symbols
- List of theorems
- List of definitions
- List of assumptions
- List of examples
- 0 Introduction
- 1 Preliminaries
- 1.1 The domain Ω
- 1.2 Function spaces
- 1.3 Caratheodory functions, Nemytskij (superposition) operators
- 1.4 Function spaces (continued)
- 1.5 Weighted Sobolev spaces
- 1.6 Leray-Lions theorem
- 1.7 Degree of mappings of monotone type
- 1.8 Harnack-type inequality, decay of solution, local regularity and interpolation inequality
- 1.9 Some technical lemmas2 Solvability of nonlinear boundary value problems
- 2.1 Formulation of the problem
- 2.2 Second order equations (bounded domains)
- 2.3 Second order equations (proof of Theorem 2.1)
- 2.4 Second order equations (unbounded domains)
- 2.5 Higher order equations (growth conditions)
- 2.6 Higher order equations (operator representation)
- 2.7 Higher order equations (degree of the mapping T)
- 2.8 Higher order equations (existence results)
- 2.9 Examples, remarks, comments
- 3 The degenerated p-Laplacian on a bounded domain
- 3.1 Basic notation3.2 Existence of the least eigenvalue of the homogeneous eigenvalue problem
- 3.3 Existence of the least eigenvalue of the nonhomogeneous eigenvalue problem
- 3.4 Maximum principle for degenerated (singular) equations
- 3.5 Positive solutions of degenerated (singular) BVP
- 3.6 Bifurcation from the least eigenvalue
- 4 The p-Laplacian in â??N
- 4.1 Nonlinear eigenvalue problem
- 4.2 Bifurcation problem for the p-Laplacian in â??N
- 4.3 Bifurcation problem for the perturbed p-Laplacian in â??N
- Bibliography
- Index