|
|
|
|
LEADER |
00000cam a2200000Ma 4500 |
001 |
EBOOKCENTRAL_ocn811402628 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
970507s1997 gw ob 001 0 eng d |
040 |
|
|
|a E7B
|b eng
|e pn
|c E7B
|d N$T
|d OCLCA
|d OCLCF
|d OCLCQ
|d DEBBG
|d YDXCP
|d OCLCQ
|d EBLCP
|d OCLCQ
|d DEBSZ
|d AZK
|d MOR
|d PIFAG
|d MERUC
|d OCLCQ
|d ZCU
|d U3W
|d COCUF
|d STF
|d WRM
|d OCLCQ
|d NRAMU
|d CRU
|d ICG
|d VTS
|d OCLCQ
|d INT
|d VT2
|d WYU
|d OCLCQ
|d TKN
|d KNM
|d OCLCQ
|d DKC
|d OCLCQ
|d UKAHL
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 922943324
|a 961509168
|a 962631000
|
020 |
|
|
|a 9783110804775
|q (electronic bk.)
|
020 |
|
|
|a 3110804778
|q (electronic bk.)
|
020 |
|
|
|z 3110154900
|q (acid-free paper)
|
020 |
|
|
|z 9783110154900
|
029 |
1 |
|
|a AU@
|b 000053287937
|
029 |
1 |
|
|a DEBBG
|b BV042350072
|
029 |
1 |
|
|a DEBBG
|b BV044092578
|
029 |
1 |
|
|a DEBSZ
|b 478284179
|
029 |
1 |
|
|a NZ1
|b 14974172
|
035 |
|
|
|a (OCoLC)811402628
|z (OCoLC)922943324
|z (OCoLC)961509168
|z (OCoLC)962631000
|
050 |
|
4 |
|a QA377
|b .D76 1997eb
|
072 |
|
7 |
|a MAT
|x 007020
|2 bisacsh
|
082 |
0 |
4 |
|a 515/.353
|2 21
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Drábek, Pavel,
|d 1953-
|1 https://id.oclc.org/worldcat/entity/E39PBJwHjkcbgR8GmG3tkrtBT3
|
245 |
1 |
0 |
|a Quasilinear elliptic equations with degenerations and singularities /
|c Pavel Drábek, Alois Kufner, Francesco Nicolosi.
|
260 |
|
|
|a Berlin ;
|a New York :
|b W. de Gruyter,
|c 1997.
|
300 |
|
|
|a 1 online resource (xii, 219 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a data file
|2 rda
|
490 |
1 |
|
|a De Gruyter series in nonlinear analysis and applications,
|x 0941-813X ;
|v 5
|
504 |
|
|
|a Includes bibliographical references (pages 209-213) and index.
|
505 |
0 |
|
|a List of symbols, theorems, definitions, assumptions, examples -- List of symbols -- List of theorems -- List of definitions -- List of assumptions -- List of examples -- 0 Introduction -- 1 Preliminaries -- 1.1 The domain Ω -- 1.2 Function spaces -- 1.3 Caratheodory functions, Nemytskij (superposition) operators -- 1.4 Function spaces (continued) -- 1.5 Weighted Sobolev spaces -- 1.6 Leray-Lions theorem -- 1.7 Degree of mappings of monotone type -- 1.8 Harnack-type inequality, decay of solution, local regularity and interpolation inequality
|
505 |
8 |
|
|a 1.9 Some technical lemmas2 Solvability of nonlinear boundary value problems -- 2.1 Formulation of the problem -- 2.2 Second order equations (bounded domains) -- 2.3 Second order equations (proof of Theorem 2.1) -- 2.4 Second order equations (unbounded domains) -- 2.5 Higher order equations (growth conditions) -- 2.6 Higher order equations (operator representation) -- 2.7 Higher order equations (degree of the mapping T) -- 2.8 Higher order equations (existence results) -- 2.9 Examples, remarks, comments -- 3 The degenerated p-Laplacian on a bounded domain
|
505 |
8 |
|
|a 3.1 Basic notation3.2 Existence of the least eigenvalue of the homogeneous eigenvalue problem -- 3.3 Existence of the least eigenvalue of the nonhomogeneous eigenvalue problem -- 3.4 Maximum principle for degenerated (singular) equations -- 3.5 Positive solutions of degenerated (singular) BVP -- 3.6 Bifurcation from the least eigenvalue -- 4 The p-Laplacian in â??N -- 4.1 Nonlinear eigenvalue problem -- 4.2 Bifurcation problem for the p-Laplacian in â??N -- 4.3 Bifurcation problem for the perturbed p-Laplacian in â??N -- Bibliography -- Index
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Differential equations, Elliptic
|x Numerical solutions.
|
650 |
|
0 |
|a Boundary value problems
|x Numerical solutions.
|
650 |
|
0 |
|a Bifurcation theory.
|
650 |
|
6 |
|a Équations différentielles elliptiques
|x Solutions numériques.
|
650 |
|
6 |
|a Problèmes aux limites
|x Solutions numériques.
|
650 |
|
6 |
|a Théorie de la bifurcation.
|
650 |
|
7 |
|a MATHEMATICS
|x Differential Equations
|x Partial.
|2 bisacsh
|
650 |
|
7 |
|a Bifurcation theory
|2 fast
|
650 |
|
7 |
|a Boundary value problems
|x Numerical solutions
|2 fast
|
650 |
|
7 |
|a Differential equations, Elliptic
|x Numerical solutions
|2 fast
|
700 |
1 |
|
|a Kufner, Alois.
|
700 |
1 |
|
|a Nicolosi, Francesco,
|d 1938-
|1 https://id.oclc.org/worldcat/entity/E39PCjDpCB3KXvBFXVm69g4dKm
|
758 |
|
|
|i has work:
|a Quasilinear elliptic equations with degenerations and singularities (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGfKYMwyCYcqbV3GhkvDtq
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Drábek, Pavel, 1953-
|t Quasilinear elliptic equations with degenerations and singularities.
|d Berlin ; New York : W. de Gruyter, 1997
|w (DLC) 97017293
|
830 |
|
0 |
|a De Gruyter series in nonlinear analysis and applications ;
|v 5.
|x 0941-813X
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3040423
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH25316344
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL3040423
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10585541
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 560850
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 9561828
|
994 |
|
|
|a 92
|b IZTAP
|