Lectures in real geometry /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin ; New York :
Walter de Gruyter,
1996.
|
Colección: | De Gruyter expositions in mathematics ;
23. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Foreword
- Introduction
- Basic algorithms in real algebraic geometry and their complexity: from Sturm�s theorem to the existential theory of reals
- 1. Introduction
- 2. Real closed fields
- 2.1. Definition and first examples of real closed fields
- 2.2. Cauchy index and real root counting
- 3. Real root counting
- 3.1. Sylvester sequence
- 3.2. Subresultants and remainders
- 3.3. Sylvester-Habicht sequence
- 3.4. Quadratic forms, Hankel matrices and real roots
- 3.5. Summary and discussion
- 4. Complexity of algorithms
- 5. Sign determinations
- 5.1. Simultaneous inequalities5.2. Thom�s lemma and its consequences
- 6. Existential theory of reals
- 6.1. Solving multivariate polynomial systems
- 6.2. Some real algebraic geometry
- 6.3. Finding points on hypersurfaces
- 6.4. Finding non empty sign conditions
- References
- Nash functions and manifolds
- Â1. Introduction
- Â2. Nash functions
- Â3. Approximation Theorem
- Â4. Nash manifolds
- Â5. Sheaf theory of Nash function germs
- Â6. Nash groups
- References
- Approximation theorems in real analytic and algebraic geometry
- IntroductionI. The analytic case
- 1. The Whitney topology for sections of a sheaf
- 2. A Whitney approximation theorem
- 3. Approximation for sections of a sheaf
- 4. Approximation for sheaf homomorphisms
- II. The algebraic case
- 5. Preliminaries on real algebraic varieties
- 6. A- and B-coherent sheaves
- 7. The approximation theorems in the algebraic case
- III. Algebraic and analytic bundles
- 8. Duality theory
- 9. Strongly algebraic vector bundles
- 10. Approximation for sections of vector bundles
- References
- Real abelian varieties and real algebraic curvesIntroduction
- 1. Generalities on complex tori
- 1.1. Complex tori
- 1.2. Homology and cohomology of tori
- 1.3. Morphisms of complex tori
- 1.4. The Albanese and the Picard variety
- 1.5. Line bundles on complex tori
- 1.6. Polarizations
- 1.7. Riemann�s bilinear relations and moduli spaces
- 2. Real structures
- 2.1. Definition of real structures
- 2.2. Real models
- 2.3. The action of conjugation on functions and forms
- 2.4. The action of conjugation on cohomology
- 2.5. A theorem of Comessatti2.6. Group cohomology
- 2.7. The action of conjugation on the Albanese variety and the Picard group
- 2.8. Period matrices in pseudonormal form and the Albanese map
- 3. Real abelian varieties
- 3.1. Real structures on complex tori
- 3.2. Equivalence classes for real structures on complex tori
- 3.3. Line bundles on complex tori with a real structure
- 3.4. Riemann bilinear relations for principally polarized real varieties
- 3.5. Moduli spaces of principally polarized real abelian varieties
- 3.6. Real theta functions