Cargando…

Algebraic invariants of links /

This book serves as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes the features of the multicomponent case not normally considered by knot-theorists, such as longitudes, the homological complexity of many-variable Laure...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hillman, Jonathan A. (Jonathan Arthur), 1947-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hackensack, N.J. : World Scientific, 2012.
Edición:2nd ed.
Colección:K & E series on knots and everything ; v. 52.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:This book serves as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes the features of the multicomponent case not normally considered by knot-theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, the fact that links are not usually boundary links, free coverings of homology boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group, and disc links. Invariants of the types considered here play an essent.
Descripción Física:1 online resource (xiv, 353 pages) : illustrations
Bibliografía:Includes bibliographical references and index.
ISBN:9789814407397
9814407399