Cargando…

Numerical Methods : Using MATLAB.

Numerical Methods using MATLAB, 3rd edition is an extensive reference offering hundreds of useful and important numerical algorithms that can be implemented into MATLAB for a graphical interpretation to help researchers analyze a particular outcome. Many worked examples are given together with exerc...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lindfield, G. R. (George R.)
Otros Autores: Penny, J. E. T. (John E. T.)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Burlington : Elsevier Science, 2012.
Edición:3rd ed.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Numerical Methods Using Matlab®
  • Copyright
  • Dedication
  • Table of Contents
  • Preface
  • List of Figures
  • 1 An Introduction to Matlab®
  • 1.1 The Matlab Software Package
  • 1.2 Matrices and Matrix Operations in Matlab
  • 1.3 Manipulating the Elements of a Matrix
  • 1.4 Transposing Matrices
  • 1.5 Special Matrices
  • 1.6 Generating Matrices and Vectors with Specified Element Values
  • 1.7 Matrix Functions
  • 1.8 Using the Matlab \ Operator for Matrix Division
  • 1.9 Element-by-Element Operations
  • 1.10 Scalar Operations and Functions
  • 1.11 String Variables
  • 1.12 Input and Output in Matlab
  • 1.13 Matlab Graphics
  • 1.14 Three-Dimensional Graphics
  • 1.15 Manipulating Graphics-Handle Graphics
  • 1.16 Scripting in Matlab
  • 1.17 User-Defined Functions in Matlab
  • 1.18 Data Structures in Matlab
  • 1.19 Editing Matlab Scripts
  • 1.20 Some Pitfalls in Matlab
  • 1.21 Faster Calculations in Matlab
  • Problems
  • 2 Linear Equations and Eigensystems
  • 2.1 Introduction
  • 2.2 Linear Equation Systems
  • 2.3 Operators \ and / for Solving Ax = b
  • 2.4 Accuracy of Solutions and Ill-Conditioning
  • 2.5 Elementary Row Operations
  • 2.6 Solution of Ax = b by Gaussian Elimination
  • 2.7 LU Decomposition
  • 2.8 Cholesky Decomposition
  • 2.9 QR Decomposition
  • 2.10 Singular Value Decomposition
  • 2.11 The Pseudo-Inverse
  • 2.12 Over- and Underdetermined Systems
  • 2.13 Iterative Methods
  • 2.14 Sparse Matrices
  • 2.15 The Eigenvalue Problem
  • 2.16 Iterative Methods for Solving the Eigenvalue Problem
  • 2.17 The Matlab Function eig
  • 2.18 Summary
  • Problems
  • 3 Solution of Nonlinear Equations
  • 3.1 Introduction
  • 3.2 The Nature of Solutions to Nonlinear Equations
  • 3.3 The Bisection Algorithm
  • 3.4 Iterative or Fixed Point Methods
  • 3.5 The Convergence of Iterative Methods
  • 3.6 Ranges for Convergence and Chaotic Behavior.
  • 3.7 Newton's Method
  • 3.8 Schroder's Method
  • 3.9 Numerical Problems
  • 3.10 The Matlab Function fzero and Comparative Studies
  • 3.11 Methods for Finding All the Roots of a Polynomial
  • 3.11.1 Bairstow's Method
  • 3.11.2 Laguerre's Method
  • 3.12 Solving Systems of Nonlinear Equations
  • 3.13 Broyden's Method for Solving Nonlinear Equations
  • 3.14 Comparing the Newton and Broyden Methods
  • 3.15 Summary
  • Problems
  • 4 Differentiation and Integration
  • 4.1 Introduction
  • 4.2 Numerical Differentiation
  • 4.3 Numerical Integration
  • 4.4 Simpson's Rule
  • 4.5 Newton-Cotes Formulae
  • 4.6 Romberg Integration
  • 4.7 Gaussian Integration
  • 4.8 Infinite Ranges of Integration
  • 4.8.1 Gauss-Laguerre Formula
  • 4.8.2 Gauss-Hermite Formula
  • 4.9 Gauss-Chebyshev Formula
  • 4.10 Gauss-Lobatto Integration
  • 4.11 Filon's Sine and Cosine Formulae
  • 4.12 Problems in the Evaluation of Integrals
  • 4.13 Test Integrals
  • 4.14 Repeated Integrals
  • 4.14.1 Simpson's Rule for Repeated Integrals
  • 4.14.2 Gaussian Integration for Repeated Integrals
  • 4.15 Matlab Functions for Double and Triple Integration
  • 4.16 Summary
  • Problems
  • 5 Solution of Differential Equations
  • 5.1 Introduction
  • 5.2 Euler's Method
  • 5.3 The Problem of Stability
  • 5.4 The Trapezoidal Method
  • 5.5 Runge-Kutta Methods
  • 5.6 Predictor-Corrector Methods
  • 5.7 Hamming's Method and the Use of Error Estimates
  • 5.8 Error Propagation in Differential Equations
  • 5.9 The Stability of Particular Numerical Methods
  • 5.10 Systems of Simultaneous Differential Equations
  • 5.11 The Lorenz Equations
  • 5.12 The Predator-Prey Problem
  • 5.13 Differential Equations Applied to Neural Networks
  • 5.14 Higher-Order Differential Equations
  • 5.15 Stiff Equations
  • 5.16 Special Techniques
  • 5.17 Extrapolation Techniques
  • 5.18 Summary
  • Problems
  • 6 Boundary Value Problems.
  • 6.1 Classification of Second-Order Partial Differential Equations
  • 6.2 The Shooting Method
  • 6.3 The Finite Difference Method
  • 6.4 Two-Point Boundary Value Problems
  • 6.5 Parabolic Partial Differential Equations
  • 6.6 Hyperbolic Partial Differential Equations
  • 6.7 Elliptic Partial Differential Equations
  • 6.8 Summary
  • Problems
  • 7 Fitting Functions to Data
  • 7.1 Introduction
  • 7.2 Interpolation Using Polynomials
  • 7.3 Interpolation Using Splines
  • 7.4 Fourier Analysis of Discrete Data
  • 7.5 Multiple Regression: Least Squares Criterion
  • 7.6 Diagnostics for Model Improvement
  • 7.7 Analysis of Residuals
  • 7.8 Polynomial Regression
  • 7.9 Fitting General Functions to Data
  • 7.10 Nonlinear Least Squares Regression
  • 7.11 Transforming Data
  • 7.12 Summary
  • Problems
  • 8 Optimization Methods
  • 8.1 Introduction
  • 8.2 Linear Programming Problems
  • 8.3 Optimizing Single-Variable Functions
  • 8.4 The Conjugate Gradient Method
  • 8.5 Moller's Scaled Conjugate Gradient Method
  • 8.6 Conjugate Gradient Method for Solving Linear Systems
  • 8.7 Genetic Algorithms
  • 8.8 Continuous Genetic Algorithm
  • 8.9 Simulated Annealing
  • 8.10 Constrained Nonlinear Optimization
  • 8.11 The Sequential Unconstrained Minimization Technique
  • 8.12 Summary
  • Problems
  • 9 Applications of the Symbolic Toolbox
  • 9.1 Introduction to the Symbolic Toolbox
  • 9.2 Symbolic Variables and Expressions
  • 9.3 Variable-Precision Arithmetic in Symbolic Calculations
  • 9.4 Series Expansion and Summation
  • 9.5 Manipulation of Symbolic Matrices
  • 9.6 Symbolic Methods for the Solution of Equations
  • 9.7 Special Functions
  • 9.8 Symbolic Differentiation
  • 9.9 Symbolic Partial Differentiation
  • 9.10 Symbolic Integration
  • 9.11 Symbolic Solution of Ordinary Differential Equations
  • 9.12 The Laplace Transform
  • 9.13 The Z-Transform.