Cargando…

Numerical Methods : Using MATLAB.

Numerical Methods using MATLAB, 3rd edition is an extensive reference offering hundreds of useful and important numerical algorithms that can be implemented into MATLAB for a graphical interpretation to help researchers analyze a particular outcome. Many worked examples are given together with exerc...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lindfield, G. R. (George R.)
Otros Autores: Penny, J. E. T. (John E. T.)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Burlington : Elsevier Science, 2012.
Edición:3rd ed.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 EBOOKCENTRAL_ocn806206003
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 120809s2012 vtu ob 001 0 eng d
040 |a MHW  |b eng  |e pn  |c MHW  |d YDXCP  |d OCLCO  |d EBLCP  |d OCLCQ  |d UKDOC  |d OCLCQ  |d DEBSZ  |d OCLCQ  |d LVT  |d OCLCO  |d YDX  |d ZCU  |d MERUC  |d OCLCQ  |d OCLCO  |d U3W  |d COCUF  |d D6H  |d UUM  |d OCLCQ  |d AGLDB  |d ICG  |d INT  |d OCLCQ  |d OCLCO  |d TMC  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCO  |d OCL  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 973379108  |a 973543305 
020 |a 9780123869883 
020 |a 0123869889 
020 |z 9780123869425  |q (paperback) 
020 |z 0123869420  |q (paperback) 
029 1 |a AU@  |b 000052906300 
029 1 |a DEBBG  |b BV044049816 
029 1 |a DEBSZ  |b 431157928 
029 1 |a DEBSZ  |b 449307948 
029 1 |a NZ1  |b 14332431 
035 |a (OCoLC)806206003  |z (OCoLC)973379108  |z (OCoLC)973543305 
050 4 |a QA297 
082 0 4 |a 001.42028553 
049 |a UAMI 
100 1 |a Lindfield, G. R.  |q (George R.) 
245 1 0 |a Numerical Methods :  |b Using MATLAB. 
250 |a 3rd ed. 
260 |a Burlington :  |b Elsevier Science,  |c 2012. 
300 |a 1 online resource (553 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Numerical Methods using MATLAB, 3rd edition is an extensive reference offering hundreds of useful and important numerical algorithms that can be implemented into MATLAB for a graphical interpretation to help researchers analyze a particular outcome. Many worked examples are given together with exercises and solutions to illustrate how numerical methods can be used to study problems which have applications in the biosciences, chaos, optimization, engineering and science across the board. Numerical Methods using MATLAB, 3e, is an extensive reference offering hundreds of useful and importa. 
588 0 |a Print version record. 
505 0 |a Front Cover -- Numerical Methods Using Matlab® -- Copyright -- Dedication -- Table of Contents -- Preface -- List of Figures -- 1 An Introduction to Matlab® -- 1.1 The Matlab Software Package -- 1.2 Matrices and Matrix Operations in Matlab -- 1.3 Manipulating the Elements of a Matrix -- 1.4 Transposing Matrices -- 1.5 Special Matrices -- 1.6 Generating Matrices and Vectors with Specified Element Values -- 1.7 Matrix Functions -- 1.8 Using the Matlab \ Operator for Matrix Division -- 1.9 Element-by-Element Operations -- 1.10 Scalar Operations and Functions -- 1.11 String Variables -- 1.12 Input and Output in Matlab -- 1.13 Matlab Graphics -- 1.14 Three-Dimensional Graphics -- 1.15 Manipulating Graphics-Handle Graphics -- 1.16 Scripting in Matlab -- 1.17 User-Defined Functions in Matlab -- 1.18 Data Structures in Matlab -- 1.19 Editing Matlab Scripts -- 1.20 Some Pitfalls in Matlab -- 1.21 Faster Calculations in Matlab -- Problems -- 2 Linear Equations and Eigensystems -- 2.1 Introduction -- 2.2 Linear Equation Systems -- 2.3 Operators \ and / for Solving Ax = b -- 2.4 Accuracy of Solutions and Ill-Conditioning -- 2.5 Elementary Row Operations -- 2.6 Solution of Ax = b by Gaussian Elimination -- 2.7 LU Decomposition -- 2.8 Cholesky Decomposition -- 2.9 QR Decomposition -- 2.10 Singular Value Decomposition -- 2.11 The Pseudo-Inverse -- 2.12 Over- and Underdetermined Systems -- 2.13 Iterative Methods -- 2.14 Sparse Matrices -- 2.15 The Eigenvalue Problem -- 2.16 Iterative Methods for Solving the Eigenvalue Problem -- 2.17 The Matlab Function eig -- 2.18 Summary -- Problems -- 3 Solution of Nonlinear Equations -- 3.1 Introduction -- 3.2 The Nature of Solutions to Nonlinear Equations -- 3.3 The Bisection Algorithm -- 3.4 Iterative or Fixed Point Methods -- 3.5 The Convergence of Iterative Methods -- 3.6 Ranges for Convergence and Chaotic Behavior. 
505 8 |a 3.7 Newton's Method -- 3.8 Schroder's Method -- 3.9 Numerical Problems -- 3.10 The Matlab Function fzero and Comparative Studies -- 3.11 Methods for Finding All the Roots of a Polynomial -- 3.11.1 Bairstow's Method -- 3.11.2 Laguerre's Method -- 3.12 Solving Systems of Nonlinear Equations -- 3.13 Broyden's Method for Solving Nonlinear Equations -- 3.14 Comparing the Newton and Broyden Methods -- 3.15 Summary -- Problems -- 4 Differentiation and Integration -- 4.1 Introduction -- 4.2 Numerical Differentiation -- 4.3 Numerical Integration -- 4.4 Simpson's Rule -- 4.5 Newton-Cotes Formulae -- 4.6 Romberg Integration -- 4.7 Gaussian Integration -- 4.8 Infinite Ranges of Integration -- 4.8.1 Gauss-Laguerre Formula -- 4.8.2 Gauss-Hermite Formula -- 4.9 Gauss-Chebyshev Formula -- 4.10 Gauss-Lobatto Integration -- 4.11 Filon's Sine and Cosine Formulae -- 4.12 Problems in the Evaluation of Integrals -- 4.13 Test Integrals -- 4.14 Repeated Integrals -- 4.14.1 Simpson's Rule for Repeated Integrals -- 4.14.2 Gaussian Integration for Repeated Integrals -- 4.15 Matlab Functions for Double and Triple Integration -- 4.16 Summary -- Problems -- 5 Solution of Differential Equations -- 5.1 Introduction -- 5.2 Euler's Method -- 5.3 The Problem of Stability -- 5.4 The Trapezoidal Method -- 5.5 Runge-Kutta Methods -- 5.6 Predictor-Corrector Methods -- 5.7 Hamming's Method and the Use of Error Estimates -- 5.8 Error Propagation in Differential Equations -- 5.9 The Stability of Particular Numerical Methods -- 5.10 Systems of Simultaneous Differential Equations -- 5.11 The Lorenz Equations -- 5.12 The Predator-Prey Problem -- 5.13 Differential Equations Applied to Neural Networks -- 5.14 Higher-Order Differential Equations -- 5.15 Stiff Equations -- 5.16 Special Techniques -- 5.17 Extrapolation Techniques -- 5.18 Summary -- Problems -- 6 Boundary Value Problems. 
505 8 |a 6.1 Classification of Second-Order Partial Differential Equations -- 6.2 The Shooting Method -- 6.3 The Finite Difference Method -- 6.4 Two-Point Boundary Value Problems -- 6.5 Parabolic Partial Differential Equations -- 6.6 Hyperbolic Partial Differential Equations -- 6.7 Elliptic Partial Differential Equations -- 6.8 Summary -- Problems -- 7 Fitting Functions to Data -- 7.1 Introduction -- 7.2 Interpolation Using Polynomials -- 7.3 Interpolation Using Splines -- 7.4 Fourier Analysis of Discrete Data -- 7.5 Multiple Regression: Least Squares Criterion -- 7.6 Diagnostics for Model Improvement -- 7.7 Analysis of Residuals -- 7.8 Polynomial Regression -- 7.9 Fitting General Functions to Data -- 7.10 Nonlinear Least Squares Regression -- 7.11 Transforming Data -- 7.12 Summary -- Problems -- 8 Optimization Methods -- 8.1 Introduction -- 8.2 Linear Programming Problems -- 8.3 Optimizing Single-Variable Functions -- 8.4 The Conjugate Gradient Method -- 8.5 Moller's Scaled Conjugate Gradient Method -- 8.6 Conjugate Gradient Method for Solving Linear Systems -- 8.7 Genetic Algorithms -- 8.8 Continuous Genetic Algorithm -- 8.9 Simulated Annealing -- 8.10 Constrained Nonlinear Optimization -- 8.11 The Sequential Unconstrained Minimization Technique -- 8.12 Summary -- Problems -- 9 Applications of the Symbolic Toolbox -- 9.1 Introduction to the Symbolic Toolbox -- 9.2 Symbolic Variables and Expressions -- 9.3 Variable-Precision Arithmetic in Symbolic Calculations -- 9.4 Series Expansion and Summation -- 9.5 Manipulation of Symbolic Matrices -- 9.6 Symbolic Methods for the Solution of Equations -- 9.7 Special Functions -- 9.8 Symbolic Differentiation -- 9.9 Symbolic Partial Differentiation -- 9.10 Symbolic Integration -- 9.11 Symbolic Solution of Ordinary Differential Equations -- 9.12 The Laplace Transform -- 9.13 The Z-Transform. 
504 |a Includes bibliographical references (pages 521-523) and index. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
630 0 0 |a MATLAB. 
630 0 7 |a MATLAB  |2 fast 
650 0 |a BASIC (Computer program language) 
650 0 |a Numerical analysis. 
650 6 |a BASIC (Langage de programmation) 
650 6 |a Analyse numérique. 
650 7 |a Numerical analysis  |2 fast 
650 7 |a BASIC (Computer program language)  |2 fast 
650 7 |a Numerical analysis  |x Data processing  |2 fast 
700 1 |a Penny, J. E. T.  |q (John E. T.) 
758 |i has work:  |a Numerical methods (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFM3qCf7XDKVhvpKB8RWcK  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9780123869425 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=953183  |z Texto completo 
938 |a 123Library  |b 123L  |n 53867 
938 |a EBL - Ebook Library  |b EBLB  |n EBL953183 
938 |a YBP Library Services  |b YANK  |n 9315640 
994 |a 92  |b IZTAP